Skip to main content
Log in

Necessary and Sufficient Conditions for Solving Infinite-Dimensional Linear Inequalities

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

The existence of a feasible solution to a system of infinite-dimensional linear inequalities is characterized by a topological generalization of the Farkas Condition. If this result is specialized to a finite-dimensional vector space with finite positive cone, then a geometric proof of the classic Minkowski-Farkas Lemma is obtained. A dual version leads to an infinite-dimensional extension of the Theorem of the Alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Anderson, P. Nash, Linear Programming in Infinite-Dimensional Spaces, John Wiley & Sons: New York (1987).

  2. A. Ben-Israel, A. Charnes, On the intersection of cones and subspaces, Bull. Amer. Math. Soc., 74 (1968), 541–544.

    Google Scholar 

  3. A. Ben-Israel, Linear equations and inequalities on finite-dimensional real or complex vector spaces: a unified theory, J. Math. Anal. Appl., 27 (1969), 376–389

    Google Scholar 

  4. A. Ben-Israel, A. Charnes, K.O. Kortanek, Asymptotic duality over closed convex sets, J. Math. Anal. Appl., 35 (1971), 677–691.

    Google Scholar 

  5. J. Borwein, Multivalued approach to the Farkas lemma, Math. Prog. Study, 10 (1979), 42–47.

  6. C.C. Braunschweiger, H.E. Clark, An extension of the Farkas theorem, The American Math. Monthly, 69(4) (1962), 272–277.

  7. C.G. Broyden, A simple algebraic proof of Farkas's lemma and related theorems, Optim. Method Softw. 8(3–4) (1998), 185–189.

  8. A. Charnes, W.W. Cooper, K. Kortanek,Duality in semi-infinite programs and some works of Haar and Caratheodory, Management Sci., 9(2) (1963), 209–228.

  9. S.A. Clark, The valuation problem in arbitrage price theory, J. Math. Econom. 22 (1993), 463–478.

    Google Scholar 

  10. S.A. Clark, The random utility model with an infinite choice space, Econ. Theor., 7 (1996), 179–189.

    Google Scholar 

  11. S.A. Clark, Arbitrage approximation theory, J. Math. Econom., 33 (2000), 167–181.

    Google Scholar 

  12. S.A. Clark, An infinite-dimensional LP duality theorem, Math. Oper. Res., 28(2) (2003), 233–245.

    Google Scholar 

  13. B.D. Craven, J.J. Koliha, Generalizations of Farkas' theorem, SIAM J. Math. Anal. 8 (1977), 983–997.

  14. A. Dax, An elementary proof of Farkas' lemma, SIAM Rev. 39(3) (1997), 503–507.

    Google Scholar 

  15. A. Dax, V.P. Sreedharan, Theorems of the alternative and duality, J. Optim. Theory Appl. 94(3) (1997), 561–590.

    Google Scholar 

  16. B. De Finetti, Foresight: its logical laws, its subjective sources, Ann. Inst. Henri Poincaré 7 [Reprinted In: H.E. Kyberg and H.E. Smokler (eds.), Studies in Subjective Probability, Krieger: Huntington, N.Y., 1964] (1937).

  17. R.J. Duffin, Infinite programs, In: H.W. Kuhn and A.W. Tucker (eds.), Linear Inequalities and Related Systems, Princeton University Press: Princeton, N.J., 1956 pp. 157–170.

  18. K. Fan, On systems of linear inequalities, In: H.W. Kuhn and A.W. Tucker (eds.), Linear Inequalities and Related Systems, Princeton University Press: Princeton, N.J., (1956), pp. 99-156.

  19. K. Fan, On infinite systems of linear inequalities, J. Math. Anal. Appl. 21 (1968), 475–478.

    Google Scholar 

  20. D. Gale, The Theory of Linear Economic Models, McGraw-Hill: New York, 1960

  21. M.A. Goberna, M.A. López, J.A. Mira, J. Valls, On the existence of solutions for linear inequality systems, J. Math. Anal. Appl. 192 (1995), 133–150.

    Google Scholar 

  22. L. Hurwicz, Programming in linear spaces, In: K.J. Arrow, L. Hurwicz, and H. Uzawa (eds.), Studies in Linear and Nonlinear Programming, Stanford University Press: Stanford, California, (1958) 38–102.

  23. V. Jeyakumar, A general Farkas lemma and characterization of optimality for a nonsmooth program involving convex processes, J. Optim. Theory Appl. 55(3) (1987), 449–461.

    Google Scholar 

  24. V. Jeyakumar, B.M. Glover,Nonlinear extensions of Farkas' lemma with applications to global optimization and least squares, Math. Oper. Res. 20(4) (1995), 818–837.

    Google Scholar 

  25. V. Komornik, A simple proof of Farkas' lemma, Am. Math. Mon. 105 (1998), 10, 949-950.

    Google Scholar 

  26. D.H. Krantz, R.D. Luce, P. Suppes, and A. Tversky (1971), Foundations of Measurement, Volume I, Academic Press: New York.

  27. D.M. Kreps (1981), Arbitrage and equilibrium in economies with infinitely many commodities, J. Math. Econom. 8, 15-35.

    Google Scholar 

  28. K.S. Kretschmer, Programmes in paired spaces, Canadian J. Math. 13 (1961), 221–238.

    Google Scholar 

  29. J.B. Lasserre, A Farkas lemma without a standard closure condition, SIAM J. Control Optim. 35(1) (1997), 265–272.

  30. J.B. Lasserre, A theorem of the alternative in Banach lattices, Proceedings of the American Math. Soc. 126(1) (1998), 189–194.

  31. D. McFadden, Econometric models of probabilistic choice, In: C.F. Manski and D. McFadden (eds.), Structural Analysis of Discrete Data with Econometric Applications, MIT Press: Cambridge, Mass., (1981) 198–272.

  32. V.N. Phat, J.Y. Park, Further generalizations of Farkas' theorem and their applications in optimal control, J. Math. Anal. Appl. 216 (1997), 23–39.

    Google Scholar 

  33. R.T. Rockafellar, Convex Analysis, Princeton University Press: Princeton, N.J., 1970

  34. W. Schachermayer, No arbitrage: on the work of David Kreps, Positivity 6(3) (2002), 359–368.

    Google Scholar 

  35. H.H. Schaefer, Topological Vector Spaces, Springer-Verlag: New York 1986

  36. W. Song, A general Farkas type lemma, Integral Transform and Special Functions 4 (1996), 147–152.

  37. V.A. Sposito, H.T. David, A note on Farkas lemmas over cone domains, SIAM J. Appl. Math. 22(3) (1972), 356–358.

    Google Scholar 

  38. C. Zalinescu, A generalization of the Farkas lemma and applications to convex programming, J. Math. Anal. Appl. 66 (1978), 651–678.

    Google Scholar 

  39. Y.J. Zhu, Generalizations of some fundamental theorems on linear inequalities, Acta Math. Sinica 16 (1966), 25–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, S. Necessary and Sufficient Conditions for Solving Infinite-Dimensional Linear Inequalities. Positivity 10, 475–489 (2006). https://doi.org/10.1007/s11117-005-0042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-005-0042-x

Keywords

Navigation