Abstract
Let k(x, y) be the positive definite kernel of an integral operator on an unbounded interval of ℝ. If k belongs to class defined below, the corresponding operator is compact and trace class. We establish two results relating smoothness of k and its decay rate at infinity along the diagonal with the decay rate of the eigenvalues. The first result deals with the Lipschitz case; the second deals with the uniformly C1 case. The optimal results known for compact intervals are recovered as special cases, and the relevance of these results for Fourier transforms is pointed out.
Similar content being viewed by others
References
J. Buescu, Positive integral operators in unbounded domains. Jour. Math. Anal. Appl., (2004), 244–255.
J. Buescu, F. Garcia, I. Lourtie, A. Paixão, Positive definiteness, integral equations and Fourier transforms. Jour. Int. Eq. Appl., 16 1 (2004) 33–52.
J. Buescu, F. Garcia, I. Lourtie, L2(ℝ) nonstationary processes and the sampling theorem. IEEE Sign. Proc. Lett. 8, 4 (2001), 117–119.
C. Chang, C. Ha, On eigenvalues of differentiable positive definite kernels. Integr. Equ. Oper. Theory 33 (1999), 1–7.
J. Cochran, M. Lukas, Differentiable positive definite kernels and Lipschitz continuity. Math. Proc. Camb. Phil. Soc. 104 (1988), 361–369.
I. Gohberg, M. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space. A.M.S., Providence, 1969.
C. Ha, Eigenvalues of differentiable positive definite kernels. SIAM J. Math. Anal. 17 (1986), 2, 415–419.
I. M. Novitskii, Representation of kernels of integral operators by bilinear series. Siberian Math. J. 25 (1984), 3, 774–778. Translated form the Russian: Sibirsk. Mat. Zh. 25 (1984), 5, 114–118.
J. Reade, Eigenvalues of positive definite kernels. SIAM J. Math. Anal. 14 (1983), 1, 152–157.
J. Reade, Eigenvalues of Lipschitz kernels. Math. Proc. Camb. Phil. Soc. 93 (1983), 1, 135–140.
J. Reade, Eigenvalues of positive definite kernels II. SIAM J. Math. Anal. 15 (1984), 1, 137–142.
J. Reade, Positive definite Cp kernels. SIAM J. Math. Anal. 17 (1986), 2, 420–421.
J. Reade, Eigenvalues of smooth positive definite kernels. Proc. Edimburgh Math. Soc. 35 (1990), 41–45.
M. Reed, B. Simon, Methods of Modern Mathematical Physics. I: Functional Analysis (revised and enlarged edition). Academic Press, San Diego, 1980.
F. Riesz, B. Nagy, Functional Analysis. Ungar, New York, 1952.
H. Weyl, Das Asymptotische Verteilunggesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71 (1912), 2, 441–479.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Buescu, J., Paixão, A. Eigenvalues of Positive Definite Integral Operators on Unbounded Intervals. Positivity 10, 627–646 (2006). https://doi.org/10.1007/s11117-005-0040-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11117-005-0040-z