Skip to main content
Log in

Eigenvalues of Positive Definite Integral Operators on Unbounded Intervals

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let k(x, y) be the positive definite kernel of an integral operator on an unbounded interval of ℝ. If k belongs to class defined below, the corresponding operator is compact and trace class. We establish two results relating smoothness of k and its decay rate at infinity along the diagonal with the decay rate of the eigenvalues. The first result deals with the Lipschitz case; the second deals with the uniformly C1 case. The optimal results known for compact intervals are recovered as special cases, and the relevance of these results for Fourier transforms is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Buescu, Positive integral operators in unbounded domains. Jour. Math. Anal. Appl., (2004), 244–255.

  2. J. Buescu, F. Garcia, I. Lourtie, A. Paixão, Positive definiteness, integral equations and Fourier transforms. Jour. Int. Eq. Appl., 16 1 (2004) 33–52.

    Google Scholar 

  3. J. Buescu, F. Garcia, I. Lourtie, L2(ℝ) nonstationary processes and the sampling theorem. IEEE Sign. Proc. Lett. 8, 4 (2001), 117–119.

  4. C. Chang, C. Ha, On eigenvalues of differentiable positive definite kernels. Integr. Equ. Oper. Theory 33 (1999), 1–7.

    Google Scholar 

  5. J. Cochran, M. Lukas, Differentiable positive definite kernels and Lipschitz continuity. Math. Proc. Camb. Phil. Soc. 104 (1988), 361–369.

  6. I. Gohberg, M. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space. A.M.S., Providence, 1969.

  7. C. Ha, Eigenvalues of differentiable positive definite kernels. SIAM J. Math. Anal. 17 (1986), 2, 415–419.

    Google Scholar 

  8. I. M. Novitskii, Representation of kernels of integral operators by bilinear series. Siberian Math. J. 25 (1984), 3, 774–778. Translated form the Russian: Sibirsk. Mat. Zh. 25 (1984), 5, 114–118.

  9. J. Reade, Eigenvalues of positive definite kernels. SIAM J. Math. Anal. 14 (1983), 1, 152–157.

    Google Scholar 

  10. J. Reade, Eigenvalues of Lipschitz kernels. Math. Proc. Camb. Phil. Soc. 93 (1983), 1, 135–140.

  11. J. Reade, Eigenvalues of positive definite kernels II. SIAM J. Math. Anal. 15 (1984), 1, 137–142.

    Google Scholar 

  12. J. Reade, Positive definite Cp kernels. SIAM J. Math. Anal. 17 (1986), 2, 420–421.

  13. J. Reade, Eigenvalues of smooth positive definite kernels. Proc. Edimburgh Math. Soc. 35 (1990), 41–45.

  14. M. Reed, B. Simon, Methods of Modern Mathematical Physics. I: Functional Analysis (revised and enlarged edition). Academic Press, San Diego, 1980.

  15. F. Riesz, B. Nagy, Functional Analysis. Ungar, New York, 1952.

  16. H. Weyl, Das Asymptotische Verteilunggesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71 (1912), 2, 441–479.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Buescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buescu, J., Paixão, A. Eigenvalues of Positive Definite Integral Operators on Unbounded Intervals. Positivity 10, 627–646 (2006). https://doi.org/10.1007/s11117-005-0040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-005-0040-z

Mathematics Subject Classification (2000)

Keywords

Navigation