Advertisement

Positivity

, Volume 9, Issue 3, pp 501–509 | Cite as

A Generalized Jentzsch Theorem

  • A. K. KitoverEmail author
Article

Keywords

Fourier Analysis Operator Theory Potential Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramovich, Y.A. and Aliprantis, C.D. An invitation to operator theory, American Mathematical Society, Providence, 2002.Google Scholar
  2. 2.
    Förster, K.-H., Nagy, B. 1998On Nonnegative Operators and Fully Cyclic Peripheral SpectrumThe electronic Journal of Linear Algebra31323Google Scholar
  3. 3.
    Grobler, J.J. 1987A note on the theorems of Jentzsch–Perron and FrobeniusIndag. Math.90381391Google Scholar
  4. 4.
    Grobler, J.J.: Spectral Theory in Banach Lattices, in: C.B. Huijsmans, M.A. Kaashoek, W.A.J. Luxemburg, and B. de Pagter eds., Operator Theory in Function Spaces and Banach Lattices (Operator Theory, Advances and Applications), 75, Birkhäuser, 1995, pp. 133–172.Google Scholar
  5. 5.
    Jang, R.-J. 2000On the peripheral spectrum of order continuous positive operatorsPositivity4119130CrossRefGoogle Scholar
  6. 6.
    Jentzsch, P. 1912Über Integralgleichungen mit positive KernJ. Reine Angew. Math.141235244Google Scholar
  7. 7.
    Kitover, A.K. and A.W. Wickstead.: Operator Norm Limits of Order Continuous Operators, to appear.Google Scholar
  8. 8.
    Lotz, H.P. 1968Über das Spectrum positiver OperatorenMath. Z.1081532CrossRefGoogle Scholar
  9. 9.
    Lotz, H.P., Schaefer, H.H. 1969Über einen Satz von F. Niiro and I. SawashimaMath. Z.1083336CrossRefGoogle Scholar
  10. 10.
    McDonald, J.J. 2003The peripheral spectrum of a nonnegative matrixLinear Algebra and its Applications363217235CrossRefGoogle Scholar
  11. 11.
    Tam, B.-S. 1990On nonnegative matrices with a fully cyclic peripheral spectrumTamkang J. Math.216570Google Scholar
  12. 12.
    Zaanen, A.C. 1983Riesz spaces IINorth-HollandAmsterdamGoogle Scholar
  13. 13.
    Zaanen, A.C. 1997Introduction to operator theory in Riesz spacesSpringer-VerlagNew York and HeidelbergGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of MathematicsCommunity College of PhiladelphiaPhiladelphiaUSA

Personalised recommendations