, Volume 9, Issue 3, pp 401–414 | Cite as

On Some Properties of Bilinear Maps of Order Bounded Variation

  • Karim Boulabiar
  • Gerard BuskesEmail author
  • Robert Page


In this paper we study properties of bilinear maps of order bounded variation. Theorems of preservation of properties in passage to the triadjoint and the tensor product are presented.


Bilinear maps of order bound variation Fremlin tensor product Arens triadjoint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliprantis, C.D., Burkinshaw, O. 1985Positive OperatorsAcademic PressOrlandoGoogle Scholar
  2. 2.
    Aliprantis, C.D. and Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics, Second edition, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, RI, 2003.Google Scholar
  3. 3.
    Abramovich, Y.A. and Aliprantis, C.D.: An Invitation to Operator Theory, Graduate Studies in Mathematics, Vol. 50, American Mathematical Society, 2002.Google Scholar
  4. 4.
    Arens, R. 1951The adjoint of a bilinear operationProc. Amer. Math. Soc.2839848Google Scholar
  5. 5.
    Bernau, S.J., Huijsmans, C.B. 1995The order bidual of almost f-algebras and d-algebrasTrans. Amer. Math. Soc.34742594274Google Scholar
  6. 6.
    Birkhoff, G., Pierce, R.S. 1956Lattice-ordered ringsAn. Acad. Brasil. Ci.284169Google Scholar
  7. 7.
    Boulabiar, K. 2002Some aspect of Riesz multimorphismsIndag. Math.13419432CrossRefGoogle Scholar
  8. 8.
    Boulabiar, K., Toumi, M.A. 2002Lattice bimorphisms on f-algebrasAlgebra Univ.48103116CrossRefGoogle Scholar
  9. 9.
    Boulabiar, K., Buskes, G. and Triki, A.: Some recent trends and advances in certain lattice ordered algebras. (English. English summary) Function spaces (Edwardsville, IL, 2002), 99–133, Contemp. Math., 328, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  10. 10.
    Buskes, G.: Commutativity of certain algebras using a Mazur-Orlicz idea, Proc. Orlicz Mem. Conf., Oxford/MS (USA)1991, Exp. No.1, 1–3 (1991).Google Scholar
  11. 11.
    Buskes, G., Rooij, A. 2000Almost f-algebras: commutativity and Cauchy-Schwarz inequalityPositivity4227231CrossRefGoogle Scholar
  12. 12.
    Buskes, G., Rooij, A. 2003Bounded variation and tensor products of Banach lattices. Positivity and its applications (Nijmegen, 2001)Positivity74759CrossRefGoogle Scholar
  13. 13.
    Cristescu, R. 1976Ordered Vector Spaces and Linear Operators, Translated from the RomanianAbacus PressTunbridgeGoogle Scholar
  14. 14.
    Fremlin, D.H. 1967Abstract Köthe spaces IProc. Cambridge Philos. Soc.63653660Google Scholar
  15. 15.
    Fremlin, D.H. 1972Tensor products of Archimedean vector latticesAmer. J. Math.94778798Google Scholar
  16. 16.
    Grobler, J.J. 1999Commutativity of the Arens product in lattice ordered algebrasPositivity3357364CrossRefGoogle Scholar
  17. 17.
    Grobler, J.J., Labuschagne, C. 1988The tensor product of Archimedean ordered vector spacesMath. Proc. Cambridge Philos. Soc.104331345Google Scholar
  18. 18.
    Lotz, H.P. 1975Extensions and liftings of positive linear mappings on Banach latticesTrans. Amer. Math. Soc.21185100Google Scholar
  19. 19.
    Nakano, H. 1953Product spaces of semi-ordered linear spacesJ. Fac. Sci. Hokkaido Univ. Ser. I.12163210Google Scholar
  20. 20.
    de Pagter B. f-algebras and orthomorphisms (Thesis, Leiden, 1981).Google Scholar
  21. 21.
    Scheffold, E. 1994Über Bimorphismen und das Arens-Produkt bei kommutativen D-BanachverbandsalgebrenRev. Roumaine Math. Pures Appl.39259270Google Scholar
  22. 22.
    Scheffold, E. 1996Über die Arens-Triadjungierte Abbildung von BimorphismenRev. Roumaine Math. Pures Appl.41697701Google Scholar
  23. 23.
    Scheffold, E. 1997Maßalgebren mit intervallerhaltender linksseitiger MultiplikationActa Math. Hungar.765967Google Scholar
  24. 24.
    Scheffold, E. 1998Über symmetrische Operatoren auf Banachverbänden und Arens-RegularitätCzechoslovak Math. J. (123)48747753CrossRefGoogle Scholar
  25. 25.
    Wittstock, G. 1974Ordered normed tensor products, Foundations of quantum mechanics and ordered linear spaces (Advanced Study Inst., Marburg, 1973)SpringerBerlin6784Lecture Notes in Phys., Vol. 29Google Scholar
  26. 26.
    Wittstock, G. 1974Eine Bemerkung über Tensorprodukte von BanachverbändenArch. Math. (Basel)25627634Google Scholar
  27. 27.
    Zaanen, A.C. 1983Riesz Spaces IINorth HollandAmsterdam-New York-OxfordGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.IPESTUniversity of CarthageLa MarsaTunisia
  2. 2.Department of MathematicsUniversity of MississippiUniversityUSA

Personalised recommendations