, Volume 9, Issue 3, pp 415–435 | Cite as

On Normed Lattices and Their Banach Completions

  • A. V. Koldunov
  • A. I. VekslerEmail author


It is known that the Banach completion Y = bX of a normed lattice X need not preserve the properties to be Dedekind complete or σ-Dedekind complete. In this paper it is proved that the countable interpolation property and the property to be sequentially order complete are preserved under the Banach completion. To prove this results we found some sufficient conditions (which are close to necessary ones) on X which secure for Y to have the countable interpolation property and (respectively) to be sequentially order complete. These conditions are obtained with the help of the newly developed techniques based on representations of normed lattices. It is well known that order continuity, and σ-order continuity of a norm are preserved under the Banach completion. Here necessary and sufficient conditions on X to secure these properties in Y are discussed.


normed lattice Banach completion countable interpolation property sequential order completeness principle compact spaces norm functions X-principal ideal XPI-property order continuity σ-order continuity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliprantis, C.D. 1974On the completion of Hausdorff locally solid Riesz spacesTrans. Am. Math. Soc.196105125Google Scholar
  2. 2.
    Aliprantis, C.D. 1974Riesz seminorms with Fatou propertiesProc. Am. Math. Soc.45383388Google Scholar
  3. 3.
    Aliprantis, C.D. and Burkinshow, O.: Locally Solid Riesz Spaces, Academic Press, 1978.Google Scholar
  4. 4.
    Bukhvalov, A.V.: On topological K-lineals. Vestnik Leningr. Univ. (13) (1973), 14–20. Transl.: Vestnik Leningr. Univ. Math. 6 (1979), 219–227.Google Scholar
  5. 5.
    Dashiel, S., Hager, A., Henriksen, M. 1980Order-Cauchy completions of rings and vector lattice of continuous functionsCan. J. Math.32657685Google Scholar
  6. 6.
    Duhoux, M. 1972Le complété d’un treillis localement solideBull Soc. Math. Belg.24133151Google Scholar
  7. 7.
    Fremlin, D.H. 1972On the completion of locally solid vector latticesPac. J. Math.43341347Google Scholar
  8. 8.
    Gillman, L., Jerison, M. 1960Ring of Continuous FunctionsVan NostrandPrincetonGoogle Scholar
  9. 9.
    Koldunov, A.V.: σ-completion and 0-completion of C(B) (Russian), Func. Anal. (Uljanovsk) (6) (1977), 76–86.Google Scholar
  10. 10.
    Kawai, I. 1957Locally convex latticesJ. Math. Soc. Jpn.9281314Google Scholar
  11. 11.
    Luxemburg, W.A.J. 1965Notes on Banach function spaces. XVI A, BProc. Nedel. Akad. A68646667Google Scholar
  12. 12.
    Meyer-Nieberg, P. 1991Banach LatticesSpringer VerlagBerlinGoogle Scholar
  13. 13.
    Nakano, H. 1953Linear topologies on semi-ordered linear spacesJ. Fac. Sci. Hakkaido Univ. Math.1287104Google Scholar
  14. 14.
    Schaefer, H. 1972On the representation of Banach lattices by continuous numerical functionsMath. Z25215232CrossRefGoogle Scholar
  15. 15.
    Semadeni Z.: Banach spaces of continuous functions, Polish Sci. Publ., T.55, Warszawa, 1971.Google Scholar
  16. 16.
    Veksler, A.I. 1964Two problems in the theory of semiordered spaces (Russian)Sibirsk. Math. J.5952954Google Scholar
  17. 17.
    Veksler, A.I.: On a notion of a solid itself linear lattice and its applications to the theory of linear and linear normed lattices (Russian), Izvestija VUZ (5) (1966), 33–38.Google Scholar
  18. 18.
    Veksler, A.I.: P'-points, P'-sets, P'-spaces. A new class of order continuous measures and functionals, Dokl. AN SSSR 212 (4) (1973), 788–792. Transl.: Sov. Math. Dokl. 14 (5) (1973), 1445–1450.Google Scholar
  19. 19.
    Veksler, A.I. and Koldunov, A.V.: Sequential majorability in vector lattices (Russian). Modern Algebra Leningrad, (6) (1977), 66–85.Google Scholar
  20. 20.
    Vulikh, B.Z. 1953Some questions on the linear semiordered sets (Russian)Izvestija Akad. Nauk SSSR, Ser. Math.17365368Google Scholar
  21. 21.
    Vulikh, B.Z. 1970Remarks on the completion of normed linear latticesColloq. Math.21101102Google Scholar
  22. 22.
    Zaanen, A.C. 1983Riesz Spaces IINorth Holland Publ. Co.AmsterdamGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.St-Petersburg Federal Pedagogic UniversitySt-PetersburgRussia
  2. 2.St-Petesburg Federal University of Technology and DesignSt-PetersburgRussia

Personalised recommendations