Advertisement

Positivity

, Volume 9, Issue 3, pp 327–339 | Cite as

On the Calculus of Order Bounded Operators

In Memory of Yuri Abramovich
  • A. G. Kusraev
  • S. S. KutateladzeEmail author
Article

Abstract

This article deals with the Abramovich calculus of order bounded operators.

Keywords

fragment Freudenthal property order bounded operator Riesz–Kantorovich theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramovich, Yu.A. 1971Injective envelopes of normed structures (Russian)Dokl. Akad. Nauk SSSR197743745Google Scholar
  2. 2.
    Akilov, G.P., Kolesnikov, E.V., Kusraev, A.G. 1988The Lebesgue extension of a positive operator (Russian)Dokl. Akad. Nauk SSSR298531524Google Scholar
  3. 3.
    Aliprantis, C.D., Burkinshaw, O. 1983The components of a positive operatorMath. Z.184245257CrossRefGoogle Scholar
  4. 4.
    Aliprantis, C.D., Burkinshaw, O. 1985Positive OperatorsAcademic PressNew YorkGoogle Scholar
  5. 5.
    Dodds, P.G., Fremlin, D.H. 1979Compact operators in Banach latticesIsrael J. Math.34287320Google Scholar
  6. 6.
    Kantorovich, L.V. 1937On functional equations (Russian)Trudy Leningrad State Univ.31733Google Scholar
  7. 7.
    Kantorovich L.V. To the general theory of operations in semiordered spaces (Russian). Dokl. Akad. Nauk SSSR 1 (1936).Google Scholar
  8. 8.
    Kantorovich, L.V., Vulikh, B.Z., Pinsker, A.G. 1950Functional Analysis in Semiordered SpacesGostekhizdatMoscow and LeningradGoogle Scholar
  9. 9.
    Kolesnikov, E.V. 1987The fragments of a positive operator (Russian)Optimizatsiya40141146Google Scholar
  10. 10.
    Kolesnikov, E.V. 1988On the fragments of a majorized operator (Russian)Optimizatsiya438185Google Scholar
  11. 11.
    Kolesnikov E.V. The band projections over positive operators, Siberian Conference on Applied and Industrial Mathematics in Memory of Nobel Prize Winner L. V. Kantorovich, Sobolev Institute Press, Novosibirsk, (Russian) pp. 76–82, 1997.Google Scholar
  12. 12.
    Kusraev, A.G. 2000Dominated OperatorsKluwerDordrechtGoogle Scholar
  13. 13.
    Kusraev, A.G., Kutateladze, S.S. 1995Subdifferentials: Theory and ApplicationsKluwerDordrechtGoogle Scholar
  14. 14.
    Kusraev, A.G., Strizhevskil, V.Z. 1987Lattice-normed spaces and dominated operators, Studies on Geometry and Functional AnalysisTrudy Inst. Mat. vol. 7Sobolev Institute PressNovosibirsk132158(Russian)Google Scholar
  15. 15.
    Kutateladze, S.S. 1978Extreme points of subdifferentials (Russian)Dokl. Akad. Nauk SSSR24210011003Google Scholar
  16. 16.
    Kutateladze, S.S. 1989Fragments of a positive operator (Russian)Sibirsk. Mat. Zh.30111119Google Scholar
  17. 17.
    Lavrič, B. 1986On Freudenthal’s spectral theoremIndag. Math.48411421Google Scholar
  18. 18.
    Luxemburg, W.A.J., Zaanen, A.C. 1971The linear modulus of an order bounded linear transformationProc. Ned. Acad. Wetensch. A74422447Google Scholar
  19. 19.
    Pagter de, B. 1983The components of a positive operatorIndag. Math.48229241Google Scholar
  20. 20.
    Schaefer, H.H. 1974Banach Lattices and Positive OperatorsSpringer-VerlagBerlinGoogle Scholar
  21. 21.
    Schep, A.R. 1978Order continuous components of operators and measuresIndag. Math.40110117Google Scholar
  22. 22.
    Schwarz, H.-V. 1984Banach Lattices and OperatorsTeubnerLeipzigGoogle Scholar
  23. 23.
    Vulikh, B.Z. 1967Introduction to the Theory of Partially Ordered SpacesNoordhoofGröningenGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute for Mathematics and InformaticsVladikavkazRussia
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations