Abstract
This paper presents an improved entropy-based freight tour synthesis (FTS) using fuzzy logic (FL). One approach used in formulating FTS models is entropy maximization, which aims to obtain the most probable freight (trucks) tour flow distribution in a network based on traffic counts. These models consider fixed parameters and constraints. However, the variations in costs, traffic counts, and truck demands depending on human behavior, are not always captured in detail in such models. FL can include such variabilities in its modeling. The flexibility FL provides to the model allows to obtain solutions where some or all the constraints do not entirely satisfy—but are close to—their expected values. Moreover, the modeling approach used based on FL theory is the membership function, specifically the triangular membership function, which is defined by three points corresponding to the vertices. This optimization problem was transformed into a bi-objective problem when the optimization variables are the membership and the entropy. The performance of the proposed formulation was assessed in the Sioux Falls network. To solve the problem, the model was run in General Algebraic Modeling System (GAMS), applying the ε approach, where ε value (ε \(\in\) [0, 1] with steps of 0.01) represents the level of accomplishment that at least one of the constraints (but can be more) gets. The results show that the entropy value decreased as the accomplishment level increased, and this behavior indicates a Pareto frontier, which proves that the optimization problem is bi-objective.
Similar content being viewed by others
References
Abdulaal, M., LeBlanc, L.J.: Continuous equilibrium network design models. Transp. Res. Part b: Methodol. 13(1), 19–32 (1979). https://doi.org/10.1016/0191-2615(79)90004-3
Abrahamsson, T. (1998). Estimation of Origin-Destination Matrices Using Traffic Counts - A Literature Survey. IIASA, Laxenburg, Austria: IR-98–021. Retrieved from http://pure.iiasa.ac.at/id/eprint/5627/
Aggarwal, M.: Redefining fuzzy entropy with a general framework. Expert Syst. Appl. 164, 113671 (2021). https://doi.org/10.1016/j.eswa.2020.113671
Al-Battaineh, O., Kaysi, I.A.: Commodity-based truck origin–Destination matrix estimation using input–output data and genetic algorithms. Transp. Res. Rec. 1923(1), 37–45 (2005)
Bastida, C., Holguin-Veras, J.: Freight generation Models. Comparative analysis of regression models and multiple classification analysis. Transp. Res. Record: J. Transp. Res. Board 2097(1), 51–61 (2009). https://doi.org/10.3141/2097-07
Bellman, R., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B141–B164. Retrieved from https://www.jstor.org/stable/2629367
Bit, A.K., Biswal, M.P., Alam, S.S.: Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets Syst. 50(2), 135–141 (1992). https://doi.org/10.1016/0165-0114(92)90212-M
Bit, A.K., Biswal, M.P., Alam, S.S.: An additive fuzzy programming model for multiobjective transportation problem. Fuzzy Sets Syst. 57(3), 313–319 (1993a). https://doi.org/10.1016/0165-0114(93)90026-E
Bit, A.K., Biswal, M.P., Alam, S.S.: Fuzzy programming approach to multiobjective solid transportation problem. Fuzzy Sets Syst. 57(2), 183–194 (1993b). https://doi.org/10.1016/0165-0114(93)90158-E
Black, J.: Urban transport planning: theory and practice, vol. 4. Routledge (2018)
Board, T. R., Engineering, of S., & Medicine. (2016). Using Commodity Flow Survey Microdata and Other Establishment Data to Estimate the Generation of Freight, Freight Trips, and Service Trips: Guidebook. (J. Holguín-Veras, C. Lawson, C. Wang, M. Jaller, C. González-Calderón, S. Campbell, … D. Ramirez, Eds.). Washington, DC, USA: The National Academies Press. https://doi.org/10.17226/24602
Campbell, S., Holguin-Veras, J., Ramirez-Rios, D.G., Gonzalez-Calderon, C.A., Kalahasthi, L., Wojtowicz, J.: Freight and service parking needs and the role of demand management. Eur. Transp. Res. Rev. 10(2), 1–13 (2018). https://doi.org/10.1186/s12544-018-0309-5
Chanas, S., Kuchta, D.: A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets Syst. 82(3), 299–305 (1996). https://doi.org/10.1016/0165-0114(95)00278-2
de Ortuzar, J., D Willumsen, L. G.: Modelling Transport (Fourth Edi). Wiley (2011). https://doi.org/10.1002/9781119993308
Gonzalez-Calderon, C.A., Sanchez-Diaz, I., Sarmiento-Ordosgoitia, I., Holguin-Veras, J.: Characterization and analysis of metropolitan freight patterns in Medellin Colombia. Eur. Transp. Res. Rev. 10(2), 23 (2018). https://doi.org/10.1186/s12544-018-0290-z
Gonzalez-Calderon, C. A., & Holguín-Veras, J. (2019). Entropy-based freight tour synthesis and the role of traffic count sampling. Transportation Research Part E: Logistics and Transportation Review, 121(November 2017), 63–83. https://doi.org/10.1016/j.tre.2017.10.010
Gonzalez-Calderon, C. A. (2014). Multiclass Equilibrium Demand Synthesis. Rensselaer Polytechnic Institute.
Gonzalez-Feliu, J., Sánchez-Díaz, I.: The influence of aggregation level and category construction on estimation quality for freight trip generation models. Transp. Res. Part e: Logist. Transp. Rev. 121, 134–148 (2019). https://doi.org/10.1016/j.tre.2018.07.007
Hannan, E.L.: Linear programming with multiple fuzzy goals. Fuzzy Sets Syst. 6(3), 235–248 (1981a). https://doi.org/10.1016/0165-0114(81)90002-6
Hannan, E.L.: On fuzzy goal programming. Decis. Sci. 12(3), 522–531 (1981b). https://doi.org/10.1111/j.1540-5915.1981.tb00102.x
Holguin-Veras, J., Thorson, E.: Practical implications of modeling commercial vehicle empty trips. Transp. Res. Rec. 1833, 87–94 (2003). https://doi.org/10.3141/1833-12
Holguin-Veras, J., Jaller, M., Destro, L., Ban, X., Lawson, C., Levinson, H.: Freight generation, freight trip generation, and perils of using constant trip rates. Transp. Res. Record J. Transp. Res. Board 2224, 68–81 (2011). https://doi.org/10.3141/2224-09
Holguin-Veras, J., Encarnacion, T., Ramirez-Rios, D., He, X., (Sean), Kalahasthi, L., Perez-Guzman, S., Gonzalez-Calderon, C. A.: A multiclass tour flow model and lts role in multiclass freight tour synthesis. Transp. Sci. (2020). https://doi.org/10.1287/trsc.2019.0936
Holguin-Veras, J., Jaller, M., Sanchez-Diaz, I., Campbell, S., & Lawson, C. (2014). Freight Generation and Freight Trip Generation Models. In Modelling Freight Transport (pp. 43–63). Elsevier Inc. https://doi.org/10.1016/B978-0-12-410400-6.00003-3
Holguín-Veras, J., Hodge, S., Wojtowicz, J., Singh, C., Wang, C., Jaller, M., … Cruz, B. (2018). The New York city off-hour delivery program: a business and community-friendly sustainability program. Interfaces, 48(1), 70–86. https://doi.org/10.1287/inte.2017.0929
Holguin-Veras, J. (2013). Freight demand modeling: state of the art and practice. In Onlinepubs Trb. Washington, D.C.: paper presented to Adapting freight models and traditional freight data programs for performance measurement Workshop. Retrieved from http://onlinepubs.trb.org/onlinepubs/conferences/2013/Freight/Holguin-Veras.pdf
Krisztin, T.: Semi-parametric spatial autoregressive models in freight generation modeling. Transp. Res. Part e: Logist. Transp. Rev. 114, 121–143 (2018). https://doi.org/10.1016/j.tre.2018.03.003
Li, T., Sun, H., Wu, J., Gao, Z., Ge, Y., Ding, R.: Optimal urban expressway system in a transportation and land use interaction equilibrium framework. Transp. A: Transp. Sci. 15(2), 1247–1277 (2019). https://doi.org/10.1080/23249935.2019.1576798
Lim, Y., Kim, H.: A combined model of trip distribution and route choice problem. Transp. A: Transp. Sci. 12(8), 721–735 (2016). https://doi.org/10.1080/23249935.2016.1166171
López-Ospina, H.: Modelo de maximización de la entropía y costos generalizados intervalares para la distribución de viajes urbanos. Ingenieria y Universidad 17(2), 390–407 (2013)
López-Ospina, H., Cortés, C.E., Pérez, J., Peña, R., Figueroa-García, J.C., Urrutia-Mosquera, J.: A maximum entropy optimization model for origin-destination trip matrix estimation with fuzzy entropic parameters. Transp. A: Transp. Sci. 25, 1–38 (2021). https://doi.org/10.1080/23249935.2021.1913257
Luhandjula, M.K.: Fuzzy optimization: milestones and perspectives. Fuzzy Sets Syst. 274, 4–11 (2015). https://doi.org/10.1016/j.fss.2014.01.004
Majidi, S., Hosseini-Motlagh, S.M., Yaghoubi, S., Jokar, A.: Fuzzy green vehicle routing problem with simultaneous pickup-delivery and time windows. RAIRO-Op Res 51(4), 1151–1176 (2017). https://doi.org/10.1051/ro/2017007
Moreno-Palacio, D.P., Gonzalez-Calderon, C.A., Posada-Henao, J.J., Lopez-Ospina, H., Gil-Marin, J.K.: Entropy-based transit tour synthesis using fuzzy logic. Sustainability (2022). https://doi.org/10.3390/su142114564
Morlok, E. K., Schofer, J. L., Pierskalla, W. P., Marsten, R. E., Agarwal, S. K., Stoner, J. W., … Spacek, D. T. (1973). Development and Application of a Highway Network Design Model (Vol. 1,2).
Noriega, Y., & Florian, M. (2007). Multi-Class Demand Matrix Adjustment. Canada: CIRRELT.
Sakawa, M.: Interactive fuzzy decision making for multiobjective linear programming problems and its application. IFAC Proc. Vol. 16(13), 295–300 (1983). https://doi.org/10.1016/S1474-6670(17)62049-4
Sakawa, M., Yano, H.: An interactive fuzzy satisficing method for multiobjective linear programming problems with fuzzy parameters. IFAC Proc. Vol. 20(9), 437–442 (1987). https://doi.org/10.1016/S1474-6670(17)55745-6
Sanchez-Diaz, I., Holguin-Veras, J., Ban, X., (Jeff).: A time-dependent freight tour synthesis model. Transp. Res. Part b: Methodol. 78, 144–168 (2015). https://doi.org/10.1016/j.trb.2015.04.007
Sanchez-Diaz, I., Holguin-Veras, J., Wang, X.: An exploratory analysis of spatial effects on freight trip attraction. Transportation 43(1), 177–196 (2016). https://doi.org/10.1007/s11116-014-9570-1
Tavasszy, L. A., & Stada, J. E. (1994). The impact of decreasing border barriers in europe on freight transport by road. In Transportation Research Forum, 36th Annual Conference, 2 volumesTransportation Research Forum.
Wang, Q., & Holguin-Veras, J. (2009). Tour-based entropy maximization formulations of urban commercial vehicle movements. In 2009 Annual meeting of the transportation research board (pp. 1–22). New York: 2009 Annual meeting of the transportation research board. Retrieved from https://abstracts.aetransport.org/
Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. Road Engineering Division Meeting.
Wigan, M., Browne, M., Allen, J., & Anderson, S. (2002). Understanding the growth in service trips and developing transport modelling approaches to commercial, service and light goods movements. Association for European Transport, 15. Retrieved from http://abstracts.aetransport.org/paper/index/id/1370/confid/8
Willumsen, L. G. (1978a). Estimation of an OD Matrix from Traffic Counts - A Review. Leeds, UK: Institute of Transport Studies, University of Leeds. Retrieved from http://eprints.whiterose.ac.uk/2415/
Willumsen, L. G. (1978b). OD matrices from network data: a comparison of alternative methods for their estimation. In: Proceedings of PTRC Summer Annual Meeting 1978b Seminar in Transport Models.
Wilson, A.G.: The use of entropy maximising models, in the theory of trip distribution, mode split and route split. J. Transp. Econ. Policy 3(1), 108–126 (1969)
Wilson, A.G.: Inter-regional commodity flows: entropy maximizing approaches. Geogr. Anal. 2(3), 255–282 (1970). https://doi.org/10.1111/j.1538-4632.1970.tb00859.x
You, S.I., Ritchie, S.G.: Tour-Based Truck Demand Modeling with Entropy Maximization Using GPS Data. J. Adv. Transp. (2019). https://doi.org/10.1155/2019/5021026
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L.A.: Fuzzy algorithms. Inf. Control 12(2), 94–102 (1968). https://doi.org/10.1016/S0019-9958(68)90211-8
Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100(6), 9–34 (1999). https://doi.org/10.1016/S0165-0114(99)80004-9
Zhang, Y., Ye, Z.: Short-term traffic flow forecasting using fuzzy logic system methods. J. Intell. Transp. Syst. Technol. Plann. Op. 12(3), 102–112 (2008). https://doi.org/10.1080/15472450802262281
Zimmermann, H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1(1), 45–55 (1978). https://doi.org/10.1016/0165-0114(78)90031-3
Author information
Authors and Affiliations
Contributions
The authors confirm contribution to the paper as follows: DPM-P: writing, analysis, and interpretation of results; CAG-C: Methodology, Investigation, Writing—Review & Editing; HL-O: Methodology, Investigation, Writing; JKG-M: code, analysis; JJP-H: study conception and design, Writing—Review & Editing. All authors reviewed the results and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Moreno-Palacio, D.P., Gonzalez-Calderon, C.A., López-Ospina, H. et al. Freight tour synthesis based on entropy maximization with fuzzy logic constraints. Transportation (2023). https://doi.org/10.1007/s11116-023-10407-y
Accepted:
Published:
DOI: https://doi.org/10.1007/s11116-023-10407-y