Skip to main content

Advertisement

Log in

Effects of spatial units and travel modes on urban commuting demand modeling

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Understanding the relationships between commuting demand and built environment (BE) features is advantageous in alleviating travel pressure during the commuting period. Numerous works have explored these relationships under either a single spatial unit or travel modes. However, few efforts have attempted to examine how variations in both spatial units and transport modes affect the relationships. To address the above issues, we investigate the impact of the modifiable areal unit problem (MAUP) on the modeling results across three partitioning schemes (i.e., hexagonal-based, square-based, and administrative boundary) and nine spatial units under four commuting modes (i.e., taxi, bike-sharing, ride-hailing, and bus). A geographically weighted regression is applied to estimate commuting demands considering spatial autocorrelation and heterogeneity. The experiment is conducted using smart card data and vehicle GPS trajectories collected in Shenzhen City, China. The contributions of this study include the following three parts. First, it evaluates the pros and cons of different spatial units for commuting demand modeling. Second, it summarizes the effects of the MAUP on relationships among land use, demographic, and traffic network characteristics and commuting demand according to the partitioning scale and schemes. Third, it examines the similarities and differences in the effect of the MAUP on commuting demand modeling among four travel modes. The findings of this study contribute to the division of traffic analysis zones and the allocation of commuting trips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Aty, M., Lee, J., Siddiqui, C., Choi, K.: Geographical unit based analysis in the context of transportation safety planning. Transp. Res. Part A Policy Pract. 49, 62–75 (2013)

    Article  Google Scholar 

  • Amoh-Gyimah, R., Saberi, M., Sarvi, M.: The effect of variations in spatial units on unobserved heterogeneity in macroscopic crash models. Anal. Methods Accident Res. 13, 28–51 (2017)

    Article  Google Scholar 

  • Bai, Z., Wang, J., Wang, M., Gao, M., Sun, J.: Accuracy assessment of multi-source gridded population distribution datasets in China. Sustainability 10(5), 1363 (2018)

    Article  Google Scholar 

  • Benita, F.: Carpool to work: determinants at the county-level in the United States. J. Transp. Geog. 87, 102791 (2020)

    Article  Google Scholar 

  • Biehl, A., Ermagun, A., Stathopoulos, A.: Community mobility MAUP-ing: a socio-spatial investigation of bikeshare demand in Chicago. J. Transp. Geogr. 66, 80–90 (2018)

    Article  Google Scholar 

  • Brunsdon, C., Fotheringham, A.S., Charlton, M.E.: Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996)

    Article  Google Scholar 

  • Brunsdon, C., Fotheringham, S., Charlton, M.: Geographically weighted regression. J. Roy. Stat. Soc. Ser. D (the Statistician) 47, 431–443 (1998)

    Google Scholar 

  • Calabrese, F., Diao, M., Lorenzo, G.D., Jr., J. F., & Ratti, C. : Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transp. Res. Part C 26, 301–313 (2013)

    Article  Google Scholar 

  • Cao, X., Yang, W.: Examining the effects of the built environment and residential self-selection on commuting trips and the related CO2 emissions: An empirical study in Guangzhou, China. Transp. Res. Part D: Transp. Environ. 52, 480–494 (2017)

    Article  Google Scholar 

  • Cervero, R.: Mixed land-uses and commuting: evidence from the American Housing Survey. Transp. Res. Part A Policy Pract. 30, 361–377 (1996)

    Article  Google Scholar 

  • Cervero, R., Griesenbeck, B.: Factors influencing commuting choices in suburban labor markets: a case analysis of Pleasanton, California. Transp. Res. Part A General 22, 151–161 (1988)

    Article  Google Scholar 

  • Chang, K.-T., Khatib, Z., Ou, Y.: Effects of zoning structure and network detail on traffic demand modeling. Environ. Plann. B Plann. Des. 29, 37–52 (2002)

    Article  Google Scholar 

  • Chakour, V., Eluru, N.: Examining the influence of urban form and land use on bus ridership in Montreal. Proc. Soc. Behav. Sci. 104, 875–884 (2013)

    Article  Google Scholar 

  • Chakour, V., Eluru, N.: Examining the influence of stop level infrastructure and built environment on bus ridership in montreal. J. Transp. Geogr. 51, 205–217 (2016)

    Article  Google Scholar 

  • Chen, E., Ye, Z., Wang, C., & Zhang, W.: Discovering the spatio-temporal impacts of built environment on metro ridership using smart card data. Cities 95, 102359 (2019)

  • Dai, D., Zhou, C., Ye, C.: Spatial-temporal characteristics and factors influencing commuting activities of middle-class residents in Guangzhou City, China. Chinese Geogr. Sci. 26(3), 410–428 (2016)

  • Dark, S.J., Bram, D.: The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. 31, 471–479 (2007)

    Article  Google Scholar 

  • Ding, C., Cao, X., Wang, Y.: Synergistic effects of the built environment and commuting programs on commuting mode choice. Transp. Res. Part A Policy Pract. 118, 104–118 (2018)

    Article  Google Scholar 

  • Duan, Q., Ye, X., Li, J., Wang, K.: Empirical modeling analysis of potential commuting demand for carsharing in Shanghai, China. Sustainability 12, 620 (2020)

    Article  Google Scholar 

  • Etminani Ghasrodashti, A., Ardeshiri, M.: The impacts of built environment on home-based work and non-work trips: an empirical study from Iran. Transp. Res. Part A Policy Pract 85, 196–207 (2016)

    Article  Google Scholar 

  • Fotheringham, AS., Brunsdon, C., Charlton, M.: Geographically Weighted Regression: The Analysis Of Spatially Varying Relationships. Wiley: Hoboken, NJ, USA (2003)

  • Fu, X., Sun, M.P., Sun, H.: Taxi Commuting recognition and temporal-spatial characteristics analysis based on GPS data. ZhongguoGongluXuebao/China J. Highway Transp. 30, 134–143 (2017)

    Google Scholar 

  • Gong, P., Chen, B., Li, X., Liu, H., Wang, J., Bai, Y., Chen, J., Chen, X., Fang, L., Feng, S.: Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018. Sci. Bull. 65, 182–187 (2020a)

    Article  Google Scholar 

  • Gong, L., Jin, M., Liu, Q., Gong, Y., Liu, Y.: Identifying urban residents’ activity space at multiple geographic scales using mobile phone data. ISPRS Int. J. Geo Inf. 9(4), 241 (2020b)

    Article  Google Scholar 

  • Guo, J., Feng, T., Timmermans, H.J.: Co-dependent workplace, residence and commuting mode choice: Results of a multi-dimensional mixed logit model with panel effects. Cities 96, 102448 (2020)

    Article  Google Scholar 

  • Guo, Y., He, S.Y.: Built environment effects on the integration of dockless bike-sharing and the metro. Transp. Res. Part D Transp. Environ. 83, 102335 (2020)

    Article  Google Scholar 

  • Hadayeghi, A., Shalaby, A.S., Persaud, B.N.: Development of planning level transportation safety tools using geographically weighted poisson regression. Accid. Anal. Prev. 42, 676–688 (2010)

    Article  Google Scholar 

  • Hong, J., Shen, Q., Zhang, L.: How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales. Transportation 41, 419–440 (2014)

    Article  Google Scholar 

  • Horner, M.W., Murray, A.T.: Excess commuting and the modifiable areal unit problem. Urban Stud. 39, 131–139 (2002)

    Article  Google Scholar 

  • Hu, Y., Wang, F.: Decomposing excess commuting: A Monte Carlo simulation approach. J. Transp. Geogr. 44, 43–52 (2015)

    Article  Google Scholar 

  • Hu, Y., Wang, F.: Temporal trends of intraurban commuting in Baton Rouge, 1990–2010. Ann. Am. Assoc. Geogr. 106(2), 470–479 (2016)

    Google Scholar 

  • Hu, Y., Wang, F., Wilmot, C.G.: Commuting variability by wage groups in Baton Rouge, 1990–2010. Appl. Geogr. 3(1), 14–29 (2017)

  • Khatib, Z., Chang, K.-T., Ou, Y.: Impacts of analysis zone structures on modeled statewide traffic. J. Transp. Eng. 127, 31–38 (2001)

    Article  Google Scholar 

  • Lee, C.: Impacts of two-scale urban form and their combined effects on commuting modes in US metropolitan areas. J. Transp. Geogr. 88, 102821 (2020)

    Article  Google Scholar 

  • Li, S., Lyu, D., Liu, X., Tan, Z., Gao, F., Huang, G., Wu, Z.: The varying patterns of rail transit ridership and their relationships with fine-scale built environment factors: Big data analytics from Guangzhou. Cities 99, 102580 (2020)

    Article  Google Scholar 

  • Ma, X., Wu, Y.J., Wang, Y., Chen, F., Liu, J.: Mining smart card data for transit riders’ travel patterns. Transp. Res. Part C Emerg. Technol. 36, 1–12 (2013)

    Article  Google Scholar 

  • Ma, X., Zhang, J., Ding, C., Wang, Y.: A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership. Comput. Environ. Urban Syst. 70, 113–124 (2018)

    Article  Google Scholar 

  • Nix, S.: Travel demand modelling and the modifiable areal unit problem. In: Proceedings of the 43rd Annual Meeting of the Canadian Transportation Research Forum, Fredericton, New Brunswick (2008)

  • Niedzielski, M.A., Horner, M.W., Xiao, N.: Analyzing scale independence in jobs-housing and commuting efficiency metrics. Transp. Res. Part A Policy Pract. 58, 129–143 (2013)

    Article  Google Scholar 

  • Openshaw, S., Taylor, P.: Statistical applications in the spatial sciences. In: Wrigley, N. (ed.) chapter A million or so correlation coefficients: three experiments on the modifiable areal unit problem, pp. 127–144. Publishers, London, Pion (1979)

    Google Scholar 

  • Openstreet Map.: OpenStreetMap. Retrieved 15 September 2019, from https://www.openstreetmap.org (2019)

  • Oshan, T.M., Li, Z., Kang, W., Wolf, J., L., & Fortheringham, A. S. : MGWR: a python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. Int. J. Geo-Inform. 8, 269 (2019)

    Article  Google Scholar 

  • Qian, X., Ukkusuri, S.V.: Spatial variation of the urban taxi ridership using GPS data. Appl. Geogr. 59, 31–42 (2015)

    Article  Google Scholar 

  • Rayel, L., Dai, D., Chan, N., Cervero, R., Shaheen, S.: Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco. Transp. Policy 45, 168–178 (2016)

    Article  Google Scholar 

  • Ren, Y., Xia, T., Li, Y., Chen, X.: Predicting socioeconomic levels of urban regions via offline and online indicators. PLoS ONE 14, e0219058 (2019)

    Article  Google Scholar 

  • Reynolds, H.D.: The Modifiable Area Unit Problem: Empirical Analysis by Statistical Simulation. PhD dissertation, Graduate Department of Geography, University of Toronto (1998)

  • Santos, G., Maoh, H., Potoglou, D., Brunn, T.V.: Factors influencing modal split of commuting journeys in medium-size European cities. J. Transp. Geogr. 30, 127–137 (2013)

    Article  Google Scholar 

  • Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  Google Scholar 

  • Sun, H., Zhen, F., Jiang, Y.: Study on the characteristics of urban residents’ commuting behavior and influencing factors from the perspective of resilience theory: theoretical construction and empirical analysis from Nanjing, China. Int. J. Environ. Res. Public Health 17, 1475 (2020)

    Article  Google Scholar 

  • Tang, J., Gao, F., Liu, F., Zhang, W., Qi, Y.: Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM. Sustainability 11, 5525 (2019)

    Article  Google Scholar 

  • Tsai, J.R.: Generalized confidence interval for the slope in linear measurement error model. J. Stat. Comput. Simul. 80(8), 927–936 (2010)

    Article  Google Scholar 

  • Tu, W., Cao, R., Yue, Y., Zhou, B., Li, Q.: Spatial variations in urban public ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 69, 45–57 (2018)

    Article  Google Scholar 

  • Viegas, J.M., Martinez, L.M., Silva, E.A.: Effects of the modifiable areal unit problem on the delineation of traffic analysis zones. Environ. Plann. b. Plann. Des. 36, 625–643 (2009)

    Article  Google Scholar 

  • Wang, D., Liu, Y.: Factors influencing public transport use: a study of university commutingrs’ travel and mode choice behaviours. In: State of Australian Cities Conference, Gold Coast, Australia (2015)

  • Wang, T., Tang, T.Q., Huang, H.J., Qu, X.: The adverse impact of electric vehicles on traffic congestion in the morning commuting. Transp. Res. Part C Emerg. Technol. 125, 103073 (2021)

    Article  Google Scholar 

  • Wong, D.W.: The Modifiable Areal Unit Problem (MAUP). In: Janelle D.G., Warf B., Hansen K. (eds.) WorldMinds: Geographical Perspectives on 100 Problems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2352-1_93 (2004)

  • Wu, C., Ye, X., Ren, F., Du, Q.: Check-in behaviour and spatio-temporal vibrancy: an exploratory analysis in Shenzhen, China. Cities 77, 104–116 (2018)

    Article  Google Scholar 

  • Xu, P., Huang, H.: Modeling crash spatial heterogeneity: random parameter versus geographically weighting. Accid. Anal. Prev. 75, 16–25 (2015)

    Article  Google Scholar 

  • Xu, P., Huang, H., Dong, N., Abdel-Aty, M.: Sensitivity analysis in the context of regional safety modeling: Identifying and assessing the modifiable areal unit problem. Accid. Anal. Prev. 70, 110–120 (2014)

    Article  Google Scholar 

  • Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China (2012)

  • Zhao, P.: The impact of the built environment on bicycle commuting: Evidence from Beijing. Urban Stud. 51, 1019–1037 (2014)

    Article  Google Scholar 

  • Zhu, P., Ho, S.N., Jiang, Y., Tan, X.: Built environment, commuting behaviour and job accessibility in a rail-based dense urban context. Transp. Res. Part D Transp. Environ. 87, 102438 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded in part by Innovation-Driven Project of Central South University (No. 2020CX041), the Natural Science Foundation of Hunan Province (No. 2020JJ4752), National Key R&D Program of China (No. 2020YFB1600400), Foundation of Central South University (No. 502045002), Fundamental Research Funds for the Central Universities of Central South University (512191013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Tang, J. & Li, Z. Effects of spatial units and travel modes on urban commuting demand modeling. Transportation 49, 1549–1575 (2022). https://doi.org/10.1007/s11116-021-10219-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-021-10219-y

Keywords

Navigation