Skip to main content
Log in

Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Travel time reliability has been recognized as an important factor in cost–benefit analysis in a transportation network. To estimate the benefit and cost of travel time reliability, several network models have been proposed to estimate the monetary values both of travel time and of travel time reliability based on the driver’s route choice behavior. In this study, we propose a network model that addresses monetary values that are specific to each origin–destination pair in a road network. The proposed model is formulated as a utility maximization problem with constraints in a manner similar to studies that address the value of travel time only. The proposed model has the same equilibrium conditions as a multiclass user equilibrium traffic assignment problem with elastic demand in which the risk-averse driver’s route choice behavior is explicitly considered. By accounting for data availability, we propose a parameter estimation method based on the maximum likelihood method with two alternative approaches; namely link flow-based and route flow-based approaches. However, the two proposed methods require link flow data only. Numerical experiments are carried out to demonstrate the performance of the two proposed methods together with some insightful findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bates, J., Polak, J., Jones, P., Cook, A.: The valuation of reliability for personal travel. Transp. Res. Part E Log. Transp. Rev. 37, 191–229 (2001)

    Article  Google Scholar 

  • Becker, G.S.: A theory of the allocation of time. Econ. J. 75(299), 493–517 (1965)

    Article  Google Scholar 

  • Bras, R.L., Georgakakos, K.P.: Real time nonlinear filtering techniques in streamflow forecasting: a statistical linearization approach. In: Proceedings of the 3rd International Symposium on Stochastic Hydraulics, pp. 95–105 (1980)

  • Brownstone, D., Small, K.A.: Valuing time and reliability: assessing the evidence from road pricing demonstrations. Transp. Res. Part A Policy Pract. 39(4), 279–293 (2005)

    Article  Google Scholar 

  • Carrion, C., Levinson, D.: Value of travel time reliability: a review of current evidence. Transportation Research Part A: Policy and Practice. 46(4), 720–741 (2012)

    Google Scholar 

  • Castillo, E., Calviño, A., Nogal, M., Lo, H.K.: On the probabilistic and physical consistency of traffic random variables and models. Comput. Aided Civ. Infrastruct. Eng. 29, 496–517 (2014)

    Article  Google Scholar 

  • Chen, A., Zhou, Z.: The α-reliable mean-excess traffic equilibrium model with stochastic travel times. Transp. Res. Part B Methodol. 44(4), 493–513 (2010)

    Article  Google Scholar 

  • Chen, X.M., Xiong, C., He, X., Zhu, Z., Zhang, L.: Time-of-day vehicle mileage fees for congestion mitigation and revenue generation: a simulation-based optimization method and its real-world application. Transp. Res. Part C Emerg. Technol. 63, 71–95 (2016)

    Article  Google Scholar 

  • Clark, S., Watling, D.: Modelling network travel time reliability under stochastic demand. Transp. Res. Part B Methodol. 39(2), 119–140 (2005)

    Article  Google Scholar 

  • Cowell, F.A.: Measuring Inequality, 3rd edn. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  • Dafermos, S.: The traffic assignment problem for multi-class user transportation networks. Transp. Sci. 6(1), 73–87 (1972)

    Article  Google Scholar 

  • DeSerpa, A.C.: A theory of the economics of time. Econ. J. 81(324), 828–846 (1971)

    Article  Google Scholar 

  • Engelson, L., Fosgerau, M.: Additive measures of travel time variability. Transp. Res. Part B Methodol. 45(10), 1560–1571 (2011)

    Article  Google Scholar 

  • Fischer, A.: A special Newton-type optimization method. Optimization 24(3–4), 269–284 (1992)

    Article  Google Scholar 

  • Fosgerau, M., Karlström, A.: The value of reliability. Transp. Res. Part B Methodol. 44(1), 38–49 (2010)

    Article  Google Scholar 

  • Fukushima, M., Luo, Z.Q., Pang, J.S.: A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints. Comput. Optim. Appl. 10(1), 5–34 (1998)

    Article  Google Scholar 

  • Gan, H., Bai, Y.: The effect of travel time variability on route choice decision: a generalized linear mixed model based analysis. Transportation 41(2), 339–350 (2014)

    Article  Google Scholar 

  • Gartner, N.H.: Optimal traffic assignment with elastic demands. Transp. Sci. 14(2), 174–191 (1980)

    Article  Google Scholar 

  • Gibrat, R.: Les Inégalités économiques. Librairie du Recueil Sirey, Paris (1931)

    Google Scholar 

  • Hensher, D.A.: The sensitivity of the valuation of travel time savings to the specification of unobserved effects. Transp. Res. Part E Log. Transp. Rev. 37(2–3), 129–142 (2001)

    Article  Google Scholar 

  • Hjorth, K., Börjesson, M., Engelson, L., Fosgerau, M.: Estimating exponential scheduling preferences. Transp. Res. Part B Methodol. 81(1), 230–251 (2015)

    Article  Google Scholar 

  • Jackson, W.B., Jucker, J.V.: An empirical study of travel time variability and travel choice behavior. Transp. Sci. 16(4), 460–475 (1981)

    Article  Google Scholar 

  • Kalecki, M.: On the Gibrat distribution. Econometrica 13(2), 161–170 (1945)

    Article  Google Scholar 

  • Kato, T., Uchida, K.: A study on benefit estimation that considers the values of travel time and travel time reliability in road networks. Transportm. A Transp. Sci. 14(1–2), 89–109 (2018)

    Article  Google Scholar 

  • Kroes, K., Koster, P., Peer, S.: A practical method to estimate the benefits of improved road network reliability: an application to departing air passengers. Transportation 45(5), 1433–1448 (2018)

    Article  Google Scholar 

  • Lam, T.C., Small, K.A.: The value of time and reliability: measurement from a value pricing experiment. Transp. Res. Part E Log. Transp. Rev. 37(2–3), 231–251 (2001)

    Article  Google Scholar 

  • Lam, W.H.K., Shao, H., Sumalee, A.: Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply. Transp. Res. Part B Methodol. 42, 890–910 (2008)

    Article  Google Scholar 

  • Li, Z., Hensher, D.A., Rose, J.M.: Willingness to pay for travel time reliability in passenger transport: a review and some new empirical evidence. Transp. Res. Part E Log. Transp. Rev. 46(3), 384–403 (2010)

    Article  Google Scholar 

  • Li, H., Tu, H.Z., Zhang, X.N.: Travel time variations over time and routes: endogenous congestion with degradable capacities. Transportm. B Transp. Dyn. 5(1), 60–81 (2017)

    Google Scholar 

  • Lo, H.K., Chen, A.: Traffic equilibrium problem with route-specific costs: formulation and algorithms. Transp. Res. Part B Methodol. 34, 493–513 (2000)

    Article  Google Scholar 

  • Lo, H.K., Tung, Y.K.: Network with degradable links: capacity analysis and design. Transp. Res. Part B Methodol. 37(4), 345–363 (2003)

    Article  Google Scholar 

  • Lo, H.K., Luo, X.W., Siu, B.W.Y.: Degradable transport network: travel time budget of travelers with heterogeneous risk aversion. Transp. Res. Part B Methodol. 40, 792–806 (2006)

    Article  Google Scholar 

  • Marcotte, P., Zhu, D.: Equilibria with infinitely many differentiated classes of customers. Complementarity and variational problems. In: Proceedings of the 13th International Conference on Complementarity Problems, Jong-Shi Pang and Michael Ferris, eds., SIAM, Philadelphia, pp. 234–258 (2000)

  • Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. Wiley, New York (1959)

    Google Scholar 

  • Nagurney, A., Dong, J.: A multiclass, multicriteria traffic network equilibrium model with elastic demand. Transp. Res. Part B Methodol. 36(5), 445–469 (2002)

    Article  Google Scholar 

  • Nakayama, S., Watling, D.: Consistent formulation of network equilibrium with stochastic flows. Transp. Res. Part B Methodol. 66, 50–69 (2014)

    Article  Google Scholar 

  • Nakayama, S., Connors, R., Watling, D. (2009): Estimation of parameters of network equilibrium models: a maximum likelihood method and statistical properties of network flow. In: Transportation and Traffic Theory 2009: Golden Jubilee, , pp. 39–56. Springer, New York (2009)

  • Nguyen, S., Dupuis, C.: An efficient method for computing traffic equilibria in networks with asymmetric transportation costs. Transp. Sci. 18, 185–202 (1984)

    Article  Google Scholar 

  • Nie, Y.M.: Multi-class percentile user equilibrium with flow-dependent stochasticity. Transp. Res. Part B Methodol. 45(10), 1641–1659 (2011)

    Article  Google Scholar 

  • Prakash, A.A., Seshadri, R., Srinivasan, K.K.: A consistent reliability-based user-equilibrium problem with risk-averse users and endogenous travel time correlations: formulation and solution algorithm. Transp. Res. Part B 114, 171–198 (2018)

    Article  Google Scholar 

  • Shao, H., Lam, W.H.K., Tam, M.L.: A reliability-based stochastic traffic assignment model for network with multiple user classes under uncertainty in demand. Netw. Spat. Econ. 6, 173–204 (2006)

    Article  Google Scholar 

  • Shao, H., Lam, W.H.K., Tam, M.L., Yuan, X.-M.: Modelling rain effects on risk-taking behaviours of multi-user classes in road networks with uncertainty. J. Adv. Transp. 42(3), 265–290 (2008)

    Article  Google Scholar 

  • Shao, H., Lam, W.H.K., Sumalee, A., Chen, A., Hazelton, M.L.: Estimation of mean and covariance of peak hour origin-destination demands from day-to-day traffic counts. Transp. Res. Part B Methodol. 68, 52–75 (2014)

    Article  Google Scholar 

  • Shao, H., Lam, W.H.K., Sumalee, A., Hazelton, M.L.: Estimation of mean and covariance of stochastic multi-class OD demands from classified traffic counts. Transp. Res. Procedia 7, 192–211 (2015)

    Article  Google Scholar 

  • Sikka, N., Hanley, P.: What do commuters think travel time reliability is worth? Calculating economic value of reducing the frequency and extent of unexpected delays. Transportation 40(5), 903–919 (2013)

    Article  Google Scholar 

  • Siu, B.W.Y., Lo, H.K.: Doubly uncertain transportation network: degradable capacity and stochastic demand. Eur. J. Oper. Res. 191(1), 164–179 (2008)

    Article  Google Scholar 

  • Siu, B.W.Y., Lo, H.K.: Punctuality-based route and departure time choice. Transportm. A Transp. Sci. 10(7), 585–621 (2014)

    Article  Google Scholar 

  • Small, K.A.: The scheduling of consumer activities: work trips. Am. Econ. Rev. 72(3), 467–479 (1982)

    Google Scholar 

  • Srivastava, M.S., von Rosen, D.: Regression models with unknown singular covariance matrix. Linear Algebra Appl. 354(1–3), 255–273 (2002)

    Article  Google Scholar 

  • Steck, S., Kolarova, V., Bahamonde-Birke, F., Trommer, S., Lenz, B.: How autonomous driving may affect the value of travel time savings for commuting. Transp. Res. Rec. J. Transp. Res. Board (2018). https://doi.org/10.1177/0361198118757980

    Article  Google Scholar 

  • Sutton, J.: Gibrat’s legacy. J. Econ. Lit. 35(1), 40–59 (1997)

    Google Scholar 

  • Uchida, K.: A study on impact of stochastic traffic capacity on travel times of a road network. Doboku Gakkai Ronbunshuu D 66(4), 431–441 (2010). (in Japanese)

    Article  Google Scholar 

  • Uchida, K.: Estimating the value of travel time and of travel time reliability in road networks. Transp. Res. Part B Methodol. 66, 129–147 (2014)

    Article  Google Scholar 

  • Uchida, K.: Travel time reliability estimation model using observed link flows in a road network. Comput. Aided Civ. Infrastruct. Eng. 30(6), 449–463 (2015)

    Article  Google Scholar 

  • Uchida, K., Munehiro, K.: Impact of stochastic traffic capacity on travel time in road network. In: The 89th Annual Meeting of the Transportation Research Board (2010)

  • Uchida, K., Kato, T.: A simplified network model for travel time reliability analysis in a road network. J. Adv. Transp. (2017). https://doi.org/10.1155/2017/4941535

    Article  Google Scholar 

  • Varian, H.R.: Microeconomic Analysis, 2nd edn. W.W. Norton & Co Inc, New York (1992)

    Google Scholar 

  • Vickrey, W.S.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969)

    Google Scholar 

  • Wang, J.Y.T., Ehrgott, M., Chen, A.: A bi-objective user equilibrium model of travel time reliability in a road network. Transp. Res. Part B Methodol. 66, 4–15 (2014)

    Article  Google Scholar 

  • Watling, D.: A second-order stochastic network equilibrium model, I: theoretical foundation. Transp. Sci. 36(2), 149–166 (2002)

    Article  Google Scholar 

  • Watling, D.: User equilibrium traffic network assignment with stochastic travel times and late arrival penalty. Eur. J. Oper. Res. 175(3), 1539–1556 (2006)

    Article  Google Scholar 

  • Wu, X., Nie, Y.: Modeling heterogeneous risk-taking behavior in route choice: a stochastic dominance approach. Transp. Res. Part A Policy Pract. 45(9), 896–915 (2011)

    Article  Google Scholar 

  • Xu, X., Chen, A., Zhou, Z., Cheng, L.: A multi-class mean-excess traffic equilibrium model with elastic demand. J. Adv. Transp. 48(3), 203–222 (2014)

    Article  Google Scholar 

  • Yin, Y., Lam, W.H.K., Ieda, H.: New technology and the modeling of risk-taking behavior in congested road networks. Transp. Res. Part C Emerg. Technol. 12(3–4), 171–192 (2004)

    Article  Google Scholar 

  • Zhang, L., Xiong, C.F.: A novel agent-based modelling framework for travel time reliability analysis. Transportm. B Transp. Dyn. 5(1), 82–99 (2017)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU R5029-18).

Author information

Authors and Affiliations

Authors

Contributions

TK: Literature search and review, Mathematical analysis, Edit equations, Manuscript writing and editing, Content planning. KU: Comments for the manuscript, Literature search and review, Content planning, Manuscript writing and editing WHKL: Comments for the manuscript, Literature search and review, Manuscript writing and editing. AS: Comments for the manuscript, Literature search and review, Manuscript writing and editing.

Corresponding author

Correspondence to Teppei Kato.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

By using an approximation shown in Markowitz (1959), the expected utility function shown by (28) can be approximated as

$$\sum\limits_{i} {E\left[ {b_{i} \cdot \ln \left( {1 + Q_{i} } \right)} \right]} = \sum\limits_{i} {b_{i} \cdot E\left[ {\ln \left( {1 + Q_{i} } \right)} \right]} \approx \sum\limits_{i} {b_{i} \cdot \left( {\ln \left( {1 + q_{i} } \right) - \frac{1}{2} \cdot \frac{{\left( {cv_{i} \cdot q_{i} } \right)^{2} }}{{\left( {1 + q_{i} } \right)^{2} }}} \right)} \,$$
(90)

where \(b_{i}\) is a positive parameter on the utility function. We calculate the error of this approximation by numerical simulation in the case of \(q_{i}\) = 1000 and \(cv_{i}\) = 0.3. The result shows that the error of this approximation is at most 1.5%. We considered that it is enough small to ignore. Following Kato and Uchida (2018), \(b_{i}\) is calculated as follows.

$$b_{i} = \frac{{\varphi_{i} + \pi_{i} + \theta_{i} }}{{\sum\nolimits_{k \in I} {\left( {\varphi_{k} + \pi_{k} + \theta_{k} } \right)} }} \, \forall i \in I$$
(91)

We set the parameter \(\alpha_{i}\) in (28) as follows

$$\begin{aligned} \alpha_{i} & = \frac{1}{{\ln \left( {1 + q_{i}^{ * } } \right)}} \cdot b_{i} \cdot \left( {\ln \left( {1 + q_{i}^{ * } } \right) - \frac{1}{2} \cdot \frac{{\left( {cv_{i} \cdot q_{i}^{ * } } \right)^{2} }}{{\left( {1 + q_{i}^{ * } } \right)^{2} }}} \right) \\ & = b_{i} \cdot \left( {1 - \frac{1}{2} \cdot \frac{{\left( {cv_{i} \cdot q_{i}^{ * } } \right)^{2} }}{{\left( {1 + q_{i}^{ * } } \right)^{2} \cdot \ln \left( {1 + q_{i}^{ * } } \right)}}} \right)\quad \forall i \in {\text{I}} \\ \end{aligned}$$
(92)

where \(q_{i}^{ * }\) is the O–D flow under equilibrium conditions. By multiplying \(\ln \left( {1 + q_{i} } \right)\) and \(\alpha_{i}\) in (92), the following relationship is obtained at \(q_{i} = q_{i}^{ * }\).

$$\begin{aligned} \alpha_{i} \cdot \ln \left( {1 + q_{i} } \right) & = b_{i} \cdot \left( {1 - \frac{1}{2} \cdot \frac{{\left( {cv_{i} \cdot q_{i}^{ * } } \right)^{2} }}{{\left( {1 + q_{i}^{ * } } \right)^{2} \cdot \ln \left( {1 + q_{i} } \right)}}} \right) \cdot \ln \left( {1 + q_{i} } \right) \\ & = b_{i} \cdot \left( {\ln \left( {1 + q_{i} } \right) - \frac{1}{2} \cdot \frac{{\left( {cv_{i} \cdot q_{i} } \right)^{2} }}{{\left( {1 + q_{i} } \right)^{2} }}} \right)\quad \forall i \in {\text{I}} \\ \end{aligned}$$
(93)

(93) shows that (28) can approximate the expected utility function of \(E\left[ {u\left( {\mathbf{Q}} \right)} \right] = E\left[ {\sum\limits_{i} {b_{i} \cdot \ln \left( {1 + Q_{i} } \right)} } \right]\), because \(b_{i} \cdot E\left[ {\ln \left( {1 + Q_{i} } \right)} \right] \approx \alpha_{i} \cdot \ln \left( {1 + q_{i} } \right)\). Two partial derivatives of the left and right sides of (93) with respect to \(q_{i}\) are shown as follows.

$$\frac{\partial }{{\partial q_{i} }} \cdot \left( {b_{i} \cdot \left( {1 - \frac{1}{2} \cdot \frac{{\left( {cv_{i} \cdot q_{i}^{ * } } \right)^{2} }}{{\left( {1 + q_{i}^{ * } } \right)^{2} \cdot \ln \left( {1 + q_{i}^{ * } } \right)}}} \right) \cdot \ln \left( {1 + q_{i} } \right)} \right) = b_{i} \cdot \left( {\frac{1}{{1 + q_{i} }} - \frac{{\left( {cv_{i} } \right)^{2} \cdot q_{i}^{ * } }}{{\left( {1 + q_{i}^{ * } } \right)^{2} \cdot \left( {1 + q_{i} } \right)}} \cdot \frac{{q_{i}^{ * } }}{{2 \cdot \ln \left( {1 + q_{i}^{ * } } \right)}}} \right)$$
(94)
$$\frac{\partial }{{\partial q_{i} }} \cdot \left( {b_{i} \cdot \left( {\ln \left( {1 + q_{i} } \right) - \frac{1}{2} \cdot \frac{{\left( {cv_{i} \cdot q_{i} } \right)^{2} }}{{\left( {1 + q_{i} } \right)^{2} }}} \right)} \right) = b_{i} \cdot \left( {\frac{1}{{1 + q_{i} }} - \frac{{\left( {cv_{i} } \right)^{2} \cdot q_{i} }}{{\left( {1 + q_{i} } \right)^{3} }}} \right)$$
(95)

The difference between (94) and (95) is negligible at \(q_{i} = q_{i}^{ * }\). This implies that the marginal value of the utility function shown by (28) is almost the same as that of the expected utility of \(E\left[ {u\left( {\mathbf{Q}} \right)} \right] = E\left[ {\sum\nolimits_{i} {b_{i} \cdot \ln \left( {1 + Q_{i} } \right)} } \right]\) in the vicinity of \(q_{i} = q_{i}^{ * }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Uchida, K., Lam, W.H.K. et al. Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network. Transportation 48, 1639–1670 (2021). https://doi.org/10.1007/s11116-020-10107-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-020-10107-x

Keywords

Navigation