Skip to main content
Log in

Calibrating a transit assignment model using smart card data in a large-scale multi-modal transit network

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

This paper describes a practical automated procedure to calibrate and validate a transit assignment model. An optimization method based on particle swarm algorithm is adopted to minimize a defined error term. This error term which is based on the percentage of root mean square error and the mean absolute percent error encompasses deviation of model outputs from observations considering both segment level as well as the mode level and can be applied to a large scale network. This study is based on the frequency-based assignment model using the concept of optimal strategy while any transit assignment model can be used in the proposed methodological framework. Lastly, the model is validated using another weekday data. The proposed methodology uses automatic fare collection (AFC) data to estimate the origin–destination matrix. This study combines data from three sources: the general transit feed specification, AFC, and a strategic transport model from a large-scale multimodal public transport network. The South-East Queensland (SEQ) network in Australia is used as a case study. The AFC system in SEQ has voluminous and high quality data on passenger boardings and alightings across bus, rail and ferry modes. The results indicate that the proposed procedure can successfully develop a multi-modal transit assignment model at a large scale. Higher dispersions are seen for the bus mode, in contrast to rail and ferry modes. Furthermore, a comparison is made between the strategies used by passengers and the generated strategies by the model between each origin and destination to get more insights about the detailed behaviour of the model. Overall, the analysis indicates that the AFC data is a valuable and rich source in calibrating and validating a transit assignment model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alsger, A., Tavassoli, A., Mesbah, M., Ferreira, L.: Evaluation of effects from sample-size origin–destination estimation using smart card fare data. J. Transp. Eng. Part A Syst. 143(4), 04017003 (2017)

    Article  Google Scholar 

  • Alsger, A., Tavassoli, A., Mesbah, M., Ferreira, L., Hickman, M.: Public transport trip purpose inference using smart card fare data. Transp. Res. Part C 87, 123–137 (2018)

    Article  Google Scholar 

  • Alsger, A.A., Mesbah, M., Ferreira, L., Safi, H.: Use of smart card fare data to estimate public transport origin–destination matrix. Transp. Res. Rec. J. Transp. Res. Board 2535, 88–96 (2015)

    Article  Google Scholar 

  • Bagherian, M., Massah, S., Kermanshahi, S.: A swarm based method for solving transit network design problem. In: Proceedings of the 36th Australasian Transport Research Forum (ATRF), Brisbane, Australia (2013)

  • Bandara, R., Walker, J.P., Rüdiger, C.: Towards soil property retrieval from space: proof of concept using in situ observations. J. Hydrol. 512, 27–38 (2014)

    Article  Google Scholar 

  • Caliper: Transcad Transportation Planning Software User’s Guide Version 7. Caliper Corporation, Newton (2015)

    Google Scholar 

  • Ceder, A.: Public Transit Planning and Operation: Modeling, Practice and Behavior, 2nd edn. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  • Cepeda, M., Cominetti, R., Florian, M.: A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria. Transp. Res. Part B Methodol. 40(6), 437–459 (2006)

    Article  Google Scholar 

  • Desaulniers, G., Hickman, M.: Chapter 2 public transit. In: Barnhart, C., Laporte, G. (eds.) Handbooks in Operations Research and Management Science. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Dial, R.B.: Transit pathfinder algorithm. Highw. Res. Rec. 205, 67–85 (1967)

    Google Scholar 

  • Dixit, A., Mishra, A., Shukla, A.: Vehicle routing problem with time windows using meta-heuristic algorithms: a survey. In: Yadav, N., Yadav, A., Bansal, J., Deep, K., Kim, J. (eds.) Harmony Search and Nature Inspired Optimization Algorithms. Advances in Intelligent Systems and Computing, vol. 741. Springer, Singapore (2019)

    Google Scholar 

  • Dong, C., Liu, Z., Liu, X.: Chaos-particle swarm optimization algorithm and its application to urban traffic control. Int. J. Comput. Sci. Netw. Secur. 6(1), 97–101 (2006)

    Google Scholar 

  • Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2006)

    Google Scholar 

  • Federal Highway Administration (FHWA): Travel Model Validation and Reasonability Checking Manual Second Edition. TMIP, Washington, DC, USA (2010). https://connect.ncdot.gov/projects/planning/TPB%20Training%20Presentations/FHWA%20Model%20Validation%20Handbook.pdf

  • Florian, M., Constantin, I.: A note on logit choices in strategy transit assignment. EURO J. Transp. Logist. 1(1), 29–46 (2012)

    Article  Google Scholar 

  • Fung, S., Tong, C., Wong, S.: Validation of a conventional metro network model using real data. J. Intell. Transp. Syst. 9(2), 69–79 (2005)

    Article  Google Scholar 

  • Google: General transit feed specification reference. https://developers.google.com/transit/gtfs/ (2013). Accessed 20 Feb 2014

  • Gopalakrishnan, K.: Particle swarm optimization in civil infrastructure systems: state-of-the-art review. In: Yang, X.-S., Talatahari, S., Alavi, A.H. (eds.) Metaheuristic Applications in Structures and Infrastructures. Elsevier, Oxford (2013)

    Google Scholar 

  • Hensher, D.A., Button, K.J.: Handbook of Transport Modelling, 2nd edn. Elsevier, Amsterdam (2008)

    Google Scholar 

  • Hickman, M.D., Bernstein, D.H.: Transit service and path choice models in stochastic and time-dependent networks. Transp. Sci. 31(2), 129–146 (1997)

    Article  Google Scholar 

  • INRO: Emme User’s Manual Software Version 4.2. INRO Consultants Incorporated, Montreal (2015)

    Google Scholar 

  • Kacprzyk, J.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Berlin (2009)

    Google Scholar 

  • Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, New Jersey (1995)

  • Koutsopoulos, H.N., Ben-Akiva, M.: Advanced public transport systems, simulation-based evaluation. In: Ehsani, M., Wang, F.-Y., Brosch, G.L. (eds.) Transportation Technologies for Sustainability. Springer, New York (2013)

    Google Scholar 

  • Lam, W.H.-K., Gao, Z., Chan, K., Yang, H.: A stochastic user equilibrium assignment model for congested transit networks. Transp. Res. Part B Methodol. 33(5), 351–368 (1999)

    Article  Google Scholar 

  • Liu, Y., Bunker, J., Ferreira, L.: Transit Users’ Route-Choice Modelling in Transit Assignment: A Review. Transp. Rev. 30(6), 753–769 (2010)

    Article  Google Scholar 

  • Long Cheu, R., Srinivasan, D., Hoon Loo, W.: Training neural networks to detect freeway incidents by using particle swarm optimization. Transp. Res. Rec. J. Transp. Res. Board 1867, 11–18 (2004)

    Article  Google Scholar 

  • Mazloumi, E., Mesbah, M., Ceder, A., Moridpour, S., Currie, G.: Efficient transit schedule design of timing points: a comparison of ant colony and genetic algorithms. Transp. Res. Part B Methodol. 46(1), 217–234 (2012)

    Article  Google Scholar 

  • Meng, X., Jia, L., Qin, Y.: Train timetable optimizing and rescheduling based on improved particle swarm algorithm. Transp. Res. Rec. J. Transp. Res. Board 2197, 71–79 (2010)

    Article  Google Scholar 

  • Moore, T.: Queensland seeks next go card revolution. http://www.brisbanetimes.com.au/queensland/queensland-seeks-next-go-card-revolution-20150925-gjv9ip.html (2015). Accessed 12 Mar 2015

  • Munizaga, M., Devillaine, F., Navarrete, C., Silva, D.: Validating travel behavior estimated from smartcard data. Transp. Res. Part C Emerg. Technol. 44, 70–79 (2014)

    Article  Google Scholar 

  • Nassir, N., Hickman, M., Ma, Z.-L.: Activity detection and transfer identification for public transit fare card data. Transportation 42(4), 683–705 (2015)

    Article  Google Scholar 

  • Nassir, N., Hickman, M., Ma, Z.-L.: Statistical inference of transit passenger boarding strategies from farecard data. In: TRB 96th Annual Meeting Compendium of Papers. Transportation Research Board, Washington, DC (2017)

  • National Cooperative Highway Research Program: Travel demand forecasting: parameters and techniques, NCHRP report 716. Transportation Research Board, Available (2012)

  • Nielsen, O.A.: A stochastic transit assignment model considering differences in passengers utility functions. Transp. Res. Part B Methodol. 34(5), 377–402 (2000)

    Article  Google Scholar 

  • Nuzzolo, A., Crisalli, U., Rosati, L.: A schedule-based assignment model with explicit capacity constraints for congested transit networks. Transp. Res. Part C Emerg. Technol. 20(1), 16–33 (2012)

    Article  Google Scholar 

  • Panigrahi, B.K., Shi, Y., Lim, M.-H.: Handbook of Swarm Intelligence: Concepts, Principles and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  • Parveen, M., Shalaby, A., Wahba, M.: G-Emme/2: automatic calibration tool of the Emme/2 transit assignment using genetic algorithms. J. Transp. Eng. 133(10), 549–555 (2007)

    Article  Google Scholar 

  • Pelletier, M.-P., Trépanier, M., Morency, C.: Smart card data use in public transit: a literature review. Transp. Res. Part C Emerg. Technol. 19(4), 557–568 (2011)

    Article  Google Scholar 

  • Bowes, P.: Mapinfo Professional User’s Manual Software Version 15. Pitney Bowes Software Inc, Tokyo (2015)

    Google Scholar 

  • Poon, M.H., Tong, C.O., Wong, S.C.: Validation of a schedule-based capacity restraint transit assignment model for a large-scale network. J. Adv. Transp. 38(1), 5–26 (2004)

    Article  Google Scholar 

  • Queensland Government: General transit feed specification (GTFS)—South East Queensland. https://data.qld.gov.au/dataset/general-transit-feed-specification-gtfs-seq (2013). Accessed 20 Feb 2014

  • Rahbar, M., Hickman, M., Mesbah, M., Tavassoli, A.: Determining effective sample size to calibrate a transit assignment model: a Bayesian perspective. Transp. Res. Rec. (2018). https://doi.org/10.1177/0361198118781182

    Article  Google Scholar 

  • Rahbar, M., Hickman, M., Mesbah, M., Tavassoli, A.: Calibrating a Bayesian transit assignment model using smart card data. IEEE Trans. Intell. Transp. Syst. 20(4), 1574–1583 (2019)

    Article  Google Scholar 

  • Robinson, S., Narayanan, B., Toh, N., Pereira, F.: Methods for pre-processing smartcard data to improve data quality. Transp. Res. Part C Emerg. Technol. 49, 43–58 (2014)

    Article  Google Scholar 

  • Schmöcker, J.-D., Shimamoto, H., Kurauchi, F.: Generation and calibration of transit hyperpaths. Transp. Res. Part C Emerg. Technol. 36, 406–418 (2013)

    Article  Google Scholar 

  • Slavin, H., Rabinowicz, A., Brandon, J., Flammia, G., Freimer, R.: Using automated fare collection data, GIS, and dynamic schedule queries to improve transit data and transit assignment model. In: Schedule-Based Modeling of Transportation Networks. Operations Research/Computer Science Interfaces Series, vol. 46. Springer, Boston, MA (2009)

  • Spiegelman, C.H., Park, E.S., Rilett, L.R.: Transportation Statistics and Microsimulation. Chapman & Hall/CRC, Boca Raton (2011)

    Google Scholar 

  • Spiess, H., Florian, M.: Optimal strategies: a new assignment model for transit networks. Transp. Res. Part B Methodol. 23(2), 83–102 (1989)

    Article  Google Scholar 

  • Sun, L., Lu, Y., Jin, J.G., Lee, D.-H., Axhausen, K.W.: An integrated Bayesian approach for passenger flow assignment in metro networks. Transp. Res. Part C Emerg. Technol. 52, 116–131 (2015)

    Article  Google Scholar 

  • Tavassoli, A., Mesbah, M., Hickman, M.: Application of smart card data in validating a large-scale multi-modal transit assignment model. Public Transp. (2017a). https://doi.org/10.1007/s12469-017-0171-1

    Article  Google Scholar 

  • Tavassoli, A., Mesbah, M., Hickman, M.: Quantifying error in transit assignment using smart card data in a large-scale multimodal transit network. In: TRB 96th Annual Meeting Compendium of Papers. Transport Research Board, Washington, DC (2017b)

  • Tavassoli, A., Mesbah, M., Shobeirinejad, A.: Modelling passenger waiting time using large-scale automatic fare collection data: an Australian case study. Transp. Res. Part F Traffic Psychol. Behav. 58, 500–510 (2018)

    Article  Google Scholar 

  • Teodorović, D.: Swarm intelligence systems for transportation engineering: principles and applications. Transp. Res. Part C Emerg. Technol. 16(6), 651–667 (2008)

    Article  Google Scholar 

  • Tong, C., Wong, S.: A stochastic transit assignment model using a dynamic schedule-based network. Transp. Res. Part B Methodol. 33(2), 107–121 (1998)

    Article  Google Scholar 

  • Trépanier, M., Tranchant, N., Chapleau, R.: Individual trip destination estimation in a transit smart card automated fare collection system. J. Intell. Transp. Syst. 11(1), 1–14 (2007)

    Article  Google Scholar 

  • Vlahogianni, E.I., Park, B.B., Van Lint, J.: Big data in transportation and traffic engineering. Transp. Res. Part C Emerg. Technol. 58, 161 (2015)

    Article  Google Scholar 

  • Vuk, G., Hansen, C.O.: Validating the passenger traffic model for Copenhagen. Transportation 33(4), 371–392 (2006)

    Article  Google Scholar 

  • Wahba, M., Shalaby, A.: Milatras: a microsimulation platform for testing transit-ITS policies and technologies. In: IEEE Intelligent Transportation Systems Conference (2006)

  • Washington, S., Karlaftis, M.G., Mannering, F.L.: Statistical and Econometric Methods for Transportation Data Analysis. CRC Press, Boca Raton (2011)

    Google Scholar 

  • Xu, X., Xie, L., Li, H., Qin, L.: Learning the route choice behavior of subway passengers from AFC data. Expert Syst. Appl. 95, 324–332 (2018)

    Article  Google Scholar 

  • Zhang, W., Tang, J.: Research on the Method of Calculating Train Congestion Index Based on the Automatic Fare Collection Data. Springer, Singapore (2018)

    Book  Google Scholar 

  • Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015, 931256 (2015). https://doi.org/10.1155/2015/931256

    Article  Google Scholar 

  • Zhao, H., Zou, Z., Ru, Z.: Chaotic particle swarm optimization for non-circular critical slip surface identification in slope stability analysis. In: Proceedings of the International Young Scholars’ Symposium on Rock Mechanics: Boundaries of Rock Mechanics Recent Advances and Challenges for the 21st Century (2008)

  • Zhao, J.: The Planning and Analysis Implications of Automated Data Collection Systems: Rail Transit Od Matrix Inference and Path Choice Modeling Examples. Massachusetts Institute of Technology, Cambridge (2004)

    Google Scholar 

  • Zhu, W., Hu, H., Huang, Z.: Calibrating rail transit assignment models with genetic algorithm and automated fare collection data. Comput. Aided Civil Infrastruct. Eng. 29(7), 518–530 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge TransLink for providing the AFC data for this research. We would also like to acknowledge the Queensland Department of Transport and Main Roads (DTMR), Transport Strategy and Planning Branch for providing access to the South East Queensland Strategic Transport Model (SEQSTM). The authors would like to thank Dr. Jason Kruger for his insight on the modelling approach. This work is supported by the Transport Academic Partnership between DTMR and the University of Queensland.

Author information

Authors and Affiliations

Authors

Contributions

AT: Wrote the manuscript including literature search; established the methodology, conducted the analyses. MM: assisted with the methodology development; reviewed the manuscript. MH: assisted with the methodology development; reviewed the manuscript.

Corresponding authors

Correspondence to Ahmad Tavassoli or Mahmoud Mesbah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavassoli, A., Mesbah, M. & Hickman, M. Calibrating a transit assignment model using smart card data in a large-scale multi-modal transit network. Transportation 47, 2133–2156 (2020). https://doi.org/10.1007/s11116-019-10004-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-019-10004-y

Keywords

Navigation