Modelling user satisfaction in public transport systems considering missing information

Abstract

Collecting data to obtain insights into customer satisfaction with public transport services is very time-consuming and costly. Many factors such as service frequency, reliability and comfort during the trip have been found important drivers of customer satisfaction. Consequently, customer satisfaction surveys are quite lengthy, resulting in many interviews not being completed within the aboard time of the passengers/respondents. This paper questions as to whether it is possible to reduce the amount of information collected without a compromise on insights. To address this research question, we conduct a comparative analysis of different Ordered Probit models: one with a full list of attributes versus one with partial set of attributes. For the latter, missing information was imputed using three different methods that are based on modes, single imputations using predictive models and multiple imputation. Estimation results show that the partial model using the multiple imputation method behaves in a similar way to the model that is based on the full survey. This finding opens an opportunity to reduce interview time which is critical for most customer satisfaction surveys.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abenoza, R.F., Cats, O., Susilo, Y.O.: Travel satisfaction with public transport: determinants, user classes, regional disparities and their evolution. Transp. Res. A Policy Pract. 95, 64–84 (2017). https://doi.org/10.1016/j.tra.2016.11.011

    Article  Google Scholar 

  2. Alegria, M., Takeuchi, D., Canino, G., Duan, N., Shrout, P., Meng, X.-L., Vega, W., Zane, N., Vila, D., Woo, M., Vera, M., Guarnaccia, P., Aguilar-Gaxiola, S., Sue, S., Escobar, J., Lin, K.-M., Gong, F.: Considering context, place, and culture: the National Latino and Asian American Study. Int. J. Methods Psychiatr. Res. 13, 208–220 (2004)

    Article  Google Scholar 

  3. Allison, P.D.: Multiple imputation for missing data: a cautionary tale. Sociol. Methods Res. 28, 301–309 (2000). https://doi.org/10.1177/0049124100028003003

    Article  Google Scholar 

  4. Bordagaray, M., Dell’Olio, L., Ibeas, A., Cecín, P.: Modelling user perception of bus transit quality considering user and service heterogeneity. Transp. A Transp. Sci. 10, 705–721 (2014). https://doi.org/10.1080/23249935.2013.823579

    Article  Google Scholar 

  5. Brand, J.P.L.: Development, implementation and evaluation of multiple imputation strategies for the statistical analysis of incomplete data sets. Ph.D, Thesis, Erasmus University, Rotterdam, The Netherlands (1999) (ISBN: 90-74479-08-1)

  6. Brand, J.P.L., Van Buuren, S., Groothuis-Oudshoorn, K., Gelsema, E.S.: A toolkit in SAS for the evaluation of multiple imputation methods. Stat. Neerl. 57, 36–45 (2003). https://doi.org/10.1111/1467-9574.00219

    Article  Google Scholar 

  7. Burton, A., Billingham, L.J., Bryan, S.: Cost-effectiveness in clinical trials: using multiple imputation to deal with incomplete cost data. Clin. Trials J. Soc. Clin. Trials 4, 154–161 (2007). https://doi.org/10.1177/1740774507076914

    Article  Google Scholar 

  8. Casella, G., George, E.I., Casella, G., George, E.I.: Explaining the Gibbs sampler stable. http://www.jstor.org/stable/2685208 Linked references are available on JSTOR for this article: Explaining the Gibbs Sampler. 3, 167–174 (2016)

  9. Chiou, J.-M., Zhang, Y.-C., Chen, W.-H., Chang, C.-W.: A functional data approach to missing value imputation and outlier detection for traffic flow data. Transp. B Transp. Dyn. 2, 106–129 (2014). https://doi.org/10.1080/21680566.2014.892847

    Article  Google Scholar 

  10. Das, T., Apu, N., Hoque, M.S.S., Hadiuzzaman, M., Xu, W.: Parameters affecting the overall performance of bus network system at different operating conditions: a structural equation approach. In: Transportation Research Procedia, pp. 5063–5075. Elsevier B.V. (2017)

  11. Dell’Olio, L., Ibeas, A., Cecin, P.: The quality of service desired by public transport users. Transp. Policy 18, 217–227 (2011). https://doi.org/10.1016/j.tranpol.2010.08.005

    Article  Google Scholar 

  12. dell’Olio, L., Ibeas, A., Cecín, P.: Modelling user perception of bus transit quality. Transp. Policy 17, 388–397 (2010). https://doi.org/10.1016/j.tranpol.2010.04.006

    Article  Google Scholar 

  13. de Oña, J., de Oña, R., Eboli, L., Mazzulla, G.: Perceived service quality in bus transit service: a structural equation approach. Transp. Policy 29, 219–226 (2013). https://doi.org/10.1016/j.tranpol.2013.07.001

    Article  Google Scholar 

  14. de Oña, J., de Oña, R., López, G.: Transit service quality analysis using cluster analysis and decision trees: a step forward to personalized marketing in public transportation. Transportation 43, 725–747 (2016). https://doi.org/10.1007/s11116-015-9615-0

    Article  Google Scholar 

  15. Donders, A.R.T., van der Heijden, G.J.M.G., Stijnen, T., Moons, K.G.M.: Review: a gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59, 1087–1091 (2006). https://doi.org/10.1016/j.jclinepi.2006.01.014

    Article  Google Scholar 

  16. Eboli, L., Mazzulla, G.: A methodology for evaluating transit service quality based on subjective and objective measures from the passenger’s point of view. Transp. Policy 18, 172–181 (2011). https://doi.org/10.1016/j.tranpol.2010.07.007

    Article  Google Scholar 

  17. EC: Quattro Final Report. Paris (1999)

  18. Echaniz, E., Dell’Olio, L., Ibeas, Á.: Modelling perceived quality for urban public transport systems using weighted variables and random parameters. Transp. Policy 67, 31–39 (2018). https://doi.org/10.1016/j.tranpol.2017.05.006

    Article  Google Scholar 

  19. Echaniz, E., Dell’Olio, L., Ibeas, Á., Dell’olio, L., Ibeas, Á.: Modelling perceived quality for urban public transport systems using weighted variables and random parameters. Transp. Policy (2017). https://doi.org/10.1016/j.tranpol.2017.05.006

    Article  Google Scholar 

  20. Fellesson, M., Friman, M.: Perceived satisfaction with public transport service in nine European cities. Transp. Res. Forum 47, 874770 (2008). https://doi.org/10.5399/osu/jtrf.47.3.2126

    Article  Google Scholar 

  21. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman & Hall, London (1996)

    Google Scholar 

  22. Graham, J.W., Hofer, S.M., MacKinnon, D.P.: Maximizing the usefulness of data obtained with planned missing value patterns: an application of maximum likelihood procedures. Multivar. Behav. Res. 31, 197–218 (1996). https://doi.org/10.1207/s15327906mbr3102_3

    Article  Google Scholar 

  23. Graham, J.W., Olchowski, A.E., Gilreath, T.D.: How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev. Sci. 8, 206–213 (2007). https://doi.org/10.1007/s11121-007-0070-9

    Article  Google Scholar 

  24. Graham, J.W., Schafer, J.L.: On the performance of multiple imputation for multivariate data with small sample size. Stat. Strateg. Small Sample Res. 50, 1–27 (1999)

    Google Scholar 

  25. Greene, W.: Limdep Computer Program: Version 9. Econometric Software, Plainview, NY (2007)

    Google Scholar 

  26. Greene, W.H.: Econometric Analysis, 6th edn. Prentice Hall, Englewood Cliffs (2008)

    Google Scholar 

  27. Greene, W.H., Hensher, D.A.: Modeling Ordered Choices: A Primer. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  28. Guirao, B., García, A., López, M.E., Acha, C., Comendador, J.: New QR survey methodologies to analyze user perception of service quality in public transport: the experience of Madrid. J. Public Transp. 18(3), 5 (2015)

    Article  Google Scholar 

  29. Guirao, B., García-Pastor, A., López-Lambas, M.E.M.E., García-Pastor, A., López-Lambas, M.E., García-Pastor, A., López-Lambas, M.E.M.E.: The importance of service quality attributes in public transportation: narrowing the gap between scientific research and practitioners’ needs. Transp. Policy 49, 68–77 (2016). https://doi.org/10.1016/j.tranpol.2016.04.003

    Article  Google Scholar 

  30. Henrickson, K., Zou, Y., Wang, Y.: Flexible and robust method for missing loop detector data imputation. Transp. Res. Rec. J. Transp. Res. Board 2527, 29–36 (2015). https://doi.org/10.3141/2527-04

    Article  Google Scholar 

  31. Hensher, D.A., Stopher, P., Bullock, P.: Service quality—developing a service quality index in the provision of commercial bus contracts. Transp. Res. A Policy Pract. 37, 499–517 (2003). https://doi.org/10.1016/S0965-8564(02)00075-7

    Article  Google Scholar 

  32. Hernandez, S., Monzon, A., de Oña, R.: Urban transport interchanges: a methodology for evaluating perceived quality. Transp. Res. A Policy Pract. 84, 31–43 (2016). https://doi.org/10.1016/j.tra.2015.08.008

    Article  Google Scholar 

  33. Horton, N.J., Lipsitz, S.R., Horton, N.J., Lipsitz, S.R.: Multiple imputation in practice: comparison of software packages for regression models with missing variables. Stat. Comput. Softw. Rev. 55, 244–254 (2016)

    Google Scholar 

  34. König, H.-H., Bleibler, F., Friederich, H.-C., Herpertz, S., Lam, T., Mayr, A., Schmidt, F., Svaldi, J., Zipfel, S., Brettschneider, C., Hilbert, A., de Zwaan, M., Egger, N.: Economic evaluation of cognitive behavioral therapy and Internet-based guided self-help for binge-eating disorder. Int. J. Eat. Disord. 51, 155–164 (2018). https://doi.org/10.1002/eat.22822

    Article  Google Scholar 

  35. Li, L., Su, X., Zhang, Y., Lin, Y., Li, Z.: Trend modeling for traffic time series analysis: an integrated study. IEEE Trans. Intell. Transp. Syst. 16, 3430–3439 (2015). https://doi.org/10.1109/TITS.2015.2457240

    Article  Google Scholar 

  36. Love, H.A., Durtschi, J.A., Ruhlmann, L.M., Nelson Goff, B.S.: Army soldiers and suicidal thoughts: the impact of negative relationship dynamics moderated by the dissolution of romantic relationships. J. Marital Fam. Therapy 44, 265–276 (2018). https://doi.org/10.1111/jmft.12252

    Article  Google Scholar 

  37. Machado-León, J.L., de Oña, R., Baouni, T., de Oña, J.: Railway transit services in Algiers: priority improvement actions based on users perceptions. Transp. Policy 53, 175–185 (2017). https://doi.org/10.1016/j.tranpol.2016.10.004

    Article  Google Scholar 

  38. McKelvey, R.D., Zavoina, W.: Ibm Fortran-Iv program to perform N-chotomous multivariate probit analysis. Behav. Sci. 16, 186 (1971)

    Google Scholar 

  39. McKelvey, R.D., Zavoina, W.: A statistical model for the analysis of ordinal level dependent variables. J. Math. Sociol. 4, 103–120 (1975). https://doi.org/10.1080/0022250X.1975.9989847

    Article  Google Scholar 

  40. Newgard, C.D., Malveau, S., Zive, D., Lupton, J., Lin, A.: Building a longitudinal cohort from 9–1-1 to 1-year using existing data sources, probabilistic linkage, and multiple imputation: a validation study. Acad. Emerg. Med. (2018). https://doi.org/10.1111/acem.13512

    Article  Google Scholar 

  41. Parasuraman, A., Zeithaml, V.A., Berry, L.L.: A conceptual model of service quality and its implications for future research. J. Market. 49(4), 41–50 (1985). https://doi.org/10.1177/002224298504900403

    Article  Google Scholar 

  42. Pettersson, M.E., Koppelman, G.H., Flokstra-de Blok, B.M.J., Kollen, B.J., Dubois, A.E.J.: Prediction of the severity of allergic reactions to foods. Allergy 73, 1532–1540 (2018). https://doi.org/10.1111/all.13423

    Article  Google Scholar 

  43. Phan, M.H., Keebler, J.R., Chaparro, B.S.: The development and validation of the Game User Experience Satisfaction Scale (GUESS). Hum. Factors J. Hum. Factors Ergon. Soc. 58, 1217–1247 (2016). https://doi.org/10.1177/0018720816669646

    Article  Google Scholar 

  44. Pratt, J.W.: Concavity of the log likelihood. J. Am. Stat. Assoc. 76, 103–106 (1981). https://doi.org/10.1080/01621459.1981.10477613

    Article  Google Scholar 

  45. Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J., Solenberger, P.: A multivariate technique for multiply imputing missing values using a sequence of regression models. Surv. Methodol. 27, 85–95 (2001)

    Google Scholar 

  46. Rahman, F., Das, T., Hadiuzzaman, M., Hossain, S.: Perceived service quality of paratransit in developing countries: a structural equation approach. Transp. Res. A Policy Pract. 93, 23–38 (2016). https://doi.org/10.1016/j.tra.2016.08.008

    Article  Google Scholar 

  47. Rissel, C., Crane, M., Wen, L.M., Greaves, S., Standen, C.: Satisfaction with transport and enjoyment of the commute by commuting mode in inner Sydney. Health Promot. J. Aust. 27, 80–83 (2016). https://doi.org/10.1071/HE15044

    Article  Google Scholar 

  48. Rojo, M., dell’Olio, L., Gonzalo-Orden, H., Ibeas, Á.: Interurban bus service quality from the users’ viewpoint. Transp. Plan. Technol. 36, 599–616 (2013). https://doi.org/10.1080/03081060.2013.845432

    Article  Google Scholar 

  49. Rose, J.M., Bliemer, M.C.J.: Constructing efficient stated choice experimental designs. Transp. Rev. 29, 587–617 (2009). https://doi.org/10.1080/01441640902827623

    Article  Google Scholar 

  50. Rose, J.M., Bliemer, M.C.J.: Sample size requirements for stated choice experiments. Transportation 40, 1021–1041 (2013). https://doi.org/10.1007/s11116-013-9451-z

    Article  Google Scholar 

  51. Rose, J.M., Bliemer, M.C.J.: Stated choice experimental design theory : The who, the what and the why. In: Hess, S., Daly, A. (eds.) Handbook of Choice Modelling, pp. 152–177. Edward Elgar Publishing, Cheltenham (2014)

    Google Scholar 

  52. Roth, P.L.: Missing data: a conceptual review for applied psychologists. Pers. Psychol. 47, 537–560 (1994). https://doi.org/10.1111/j.1744-6570.1994.tb01736.x

    Article  Google Scholar 

  53. Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976). https://doi.org/10.1093/biomet/63.3.581

    Article  Google Scholar 

  54. Rubin, D.B.: Formalizing subjective notions about the effect of nonrespondents in sample surveys formalizing sub jective notions about the effect of nonrespondents in sample surveys. Source J. Am. Stat. Assoc. 72144202, 538–543 (1977)

    Article  Google Scholar 

  55. Rubin, D.B.: Multiple imputation after 18 + years. J. Am. Stat. Assoc. 91, 473–489 (1996). https://doi.org/10.1080/01621459.1996.10476908

    Article  Google Scholar 

  56. Rubin, D.B.: Multiple Imputation for Nonresponse in Surveys. Wiley-Interscience, Hoboken (2004)

    Google Scholar 

  57. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychol. Methods 7, 147–177 (2002). https://doi.org/10.1037/1082-989X.7.2.147

    Article  Google Scholar 

  58. St-Louis, E., Manaugh, K., van Lierop, D., El-Geneidy, A.: The happy commuter: a comparison of commuter satisfaction across modes. Transp. Res. F Traffic Psychol. Behav. 26, 160–170 (2014). https://doi.org/10.1016/j.trf.2014.07.004

    Article  Google Scholar 

  59. Sterne, J.A., White, I.R., Carlin, J.B., Spratt, M., Royston, P., Kenward, M.G., Wood, A.M., Carpenter, J.R.: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ (Clin. Res. ed.) 338, b2393 (2009). https://doi.org/10.1136/bmj.b2393

    Article  Google Scholar 

  60. Tang, J., Wang, Y., Zhang, S., Wang, H., Liu, F., Yu, S.: On missing traffic data imputation based on fuzzy c -means method by considering spatial-temporal correlation. Transp. Res. Rec. J. Transp. Res. Board. 2528, 86–95 (2015). https://doi.org/10.3141/2528-10

    Article  Google Scholar 

  61. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001). https://doi.org/10.1093/bioinformatics/17.6.520

    Article  Google Scholar 

  62. Tsami, M., Nathanail, E.: Guidance provision for increasing quality of service of public transport. Procedia Eng. 178, 551–557 (2017)

    Article  Google Scholar 

  63. Tyrinopoulos, Y., Antoniou, C.: Public transit user satisfaction: variability and policy implications. Transp. Policy 15, 260–272 (2008). https://doi.org/10.1016/j.tranpol.2008.06.002

    Article  Google Scholar 

  64. van Buuren, S.: Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242 (2007). https://doi.org/10.1177/0962280206074463

    Article  Google Scholar 

  65. van Buuren, S., Boshuizen, H.C., Knook, D.L.: Multiple imputation of missing blood pressure covariates in survival analysis. Stat. Med. 18, 681–694 (1999). https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6%3c681:AID-SIM71%3e3.0.CO;2-R

    Article  Google Scholar 

  66. Van Buuren, S., Brand, J.P.L., Groothuis-Oudshoorn, C.G.M., Rubin, D.B.: Fully conditional specification in multivariate imputation. J. Stat. Comput. Simul. 76, 1049–1064 (2006). https://doi.org/10.1080/10629360600810434

    Article  Google Scholar 

  67. Vuong, Q.H.: Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57, 307 (1989). https://doi.org/10.2307/1912557

    Article  Google Scholar 

  68. Wongwiriya, P., Nakamura, F., Tanaka, S., Ariyoshi, R.: User satisfaction of Songtaew in Thailand: case study of Khon Kaen City. In: Transportation Research Procedia, pp. 4946–4953. Elsevier B.V. (2017)

  69. Zou, M.: Gender, work orientations and job satisfaction. Work Employ. Soc. 29, 3–22 (2015). https://doi.org/10.1177/0950017014559267

    Article  Google Scholar 

Download references

Acknowledgements

This study has been possible thanks to the financing of the Spanish Ministry of Economy and Industry in the TRA2015-69903-R Project, the training Grant FPU15/02990 of the Spanish Ministry of Education, Culture and Sports, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 688082 - SETA Project) and thanks to the Spanish Ministry of Science, Innovation and Universities trough the Project TRA2017-85853-C2-1-R.

Funding

EE: Modelling and manuscript writing. CH: Manuscript writing and reviewing. AR: Data gathering and modelling. Ld: Manuscript reviewing and editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eneko Echaniz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Echaniz, E., Ho, C., Rodriguez, A. et al. Modelling user satisfaction in public transport systems considering missing information. Transportation 47, 2903–2921 (2020). https://doi.org/10.1007/s11116-019-09996-4

Download citation

Keywords

  • Missing information
  • Multiple imputation
  • User satisfaction
  • Ordered probit
  • Perceived quality