Skip to main content

Advertisement

Log in

Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Spatial interaction is an important phenomenon that reflects the human–land relationship and has long been a core topic in multiple fields, such as urban planning, transportation planning, commodity trade, and epidemic prevention. However, as an underlying cause of spatial interaction, function complementarity has been ignored by existing research for a long time. At the same time, the increase in Big Data of travel behavior provides an opportunity to model spatial interactions in detail. In this paper, we proposed three types of land-use function complementarity indices according to the spatiotemporal characteristics of human mobility. These complementarity indices are introduced to spatial interaction to improve the gravity model. We also examined the effects of land function complementarity on intra-urban spatial interaction using smart card records of metro system for different time periods and directions. The results showed that all models could be improved by introducing the land-use function complementarity indices, but the models with a single travel pattern and clear direction were explained more by the complementary indices. The indices we propose in this paper could be used for predicting spatial flow and trip distribution, and also could be considered as factors in researches about transportation and land-use planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, J. E.: The gravity model. Annu. Rev. Econ. 3, 133–160 (2011)

    Google Scholar 

  • Axhausen, K.W., Gärling, T.: Activity-based approaches to travel analysis: conceptual frameworks, models, and research problems. Transp. Rev. 12(4), 323–341 (1992)

    Google Scholar 

  • Baltagi, B.H., Egger, P., Pfaffermayr, M.: A generalized design for bilateral trade flow models. Econ. Lett. 80(3), 391–397 (2003)

    Google Scholar 

  • Birkin, M., Clarke, G., Clarke, M., Culf, R.: Using spatial models to solve difficult retail location problems. In: Stillwell, J., Clarke, G. (eds.) Applied GIS and Spatial Analysis, pp. 35–54. Willey, England (2004)

    Google Scholar 

  • Cascetta, E., Russo, F.: Calibrating aggregate travel demand models with traffic counts: estimators and statistical performance. Transportation 24(3), 271–293 (1997)

    Google Scholar 

  • Carey, H.C.: Principles of Social Science. Lippincott, Philadelphia (1858)

    Google Scholar 

  • Cervero, R.: Mixed land-uses and commuting: evidence from the American housing survey. Transp. Res. A 30(5), 361–377 (1996)

    Google Scholar 

  • Cervero, R., Kockelman, K.: Travel demand and the 3ds: density, diversity, and design. Transp. Res. D. 2(3), 199–219 (1997)

    Google Scholar 

  • Choukroun, J.M.: A general framework for the development of gravity-type trip distribution models. Reg. Sci. Urban Econ. 5(2), 177–202 (1975)

    Google Scholar 

  • Corbusier, L.: The Athens Charter. Grossman Publishers, New York (1973)

    Google Scholar 

  • Cordera, R., Sañudo, R., Dell’Olio, L., Ibeas, Á.: Trip distribution model for regional railway services considering spatial effects between stations. Transp. Policy 67, 77–84 (2018)

    Google Scholar 

  • Dai, T., Jin, F.: Spatial interaction and network structure evolvement of cities in terms of china’s rail passenger flows. Chin. Geogr. Sci. 18(3), 206–213 (2008)

    Google Scholar 

  • Dark, S.J., Bram, D.: The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. 31(5), 471–479 (2007)

    Google Scholar 

  • Derudder, B., Witlox, F., Taylor, P.J.: U.S. cities in the world city network: comparing their positions using global origins and destinations of airline passengers. Urban Geogr. 28(1), 74–91 (2007)

    Google Scholar 

  • Evans, S.P.: A relationship between the gravity model for trip distribution and the transportation problem in linear programming. Transp. Res. 7(1), 39–61 (1973)

    Google Scholar 

  • Fotheringham, A. S., O’Kelly, M. E.: Spatial interaction models: formulations and applications. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  • Gao, Q.L., Li, Q.Q., Yue, Y., Zhuang, Y., Chen, Z.P., Kong, H.: Exploring changes in the spatial distribution of the low-to-moderate income group using transit smart card data. Comput. Environ. Urban Syst. 72, 68–77 (2018)

    Google Scholar 

  • Gao, S., Liu, Y., Wang, Y., Ma, X.: Discovering spatial interaction communities from mobile phone data. Trans. GIS 17(3), 463–481 (2013)

    Google Scholar 

  • Gong, Y., Liu, Y., Lin, Y., Yang, J., Duan, Z., Li, G.: Exploring spatiotemporal characteristics of intra-urban trips using metro smartcard records. In: 2012 20th International Conference on Geoinformatic, pp. 1–7. IEEE, HK, China (2012)

  • Gong, Y., Lin, Y., Duan, Z.: Exploring the spatiotemporal structure of dynamic urban space using metro smart card records. Comput. Environ. Urban Syst. 64, 169–183 (2017)

    Google Scholar 

  • González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Google Scholar 

  • Han, X.P., Hao, Q., Wang, B.H., Zhou, T.: Origin of the scaling law in human mobility: hierarchy of traffic systems. Phys. Rev. E Stat. Phys. Plasmas Fluids 83(3), 036117 (2011)

    Google Scholar 

  • Hincks, S., Wong, C.: The spatial interaction of housing and labour markets: commuting flow analysis of North West England. Urban Stud. 47(3), 620–649 (2010)

    Google Scholar 

  • Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 101(42), 15124–15129 (2004)

    Google Scholar 

  • Ibeas, Á., Cordera, R., Dell’Olio, L., Coppola, P.: Modelling the spatial interactions between workplace and residential location. Transp. Res. Pt. A Policy Pract. 49(1), 110–122 (2013)

    Google Scholar 

  • Isserman, A.M.: The location quotient approach to estimating regional economic impacts. J. Am. Inst. Plan. 43(1), 33–41 (1977)

    Google Scholar 

  • Kang, C., Ma, X., Tong, D., Liu, Y.: Intra-urban human mobility patterns: an urban morphology perspective. Phys. A 391(4), 1702–1717 (2012)

    Google Scholar 

  • Kim, H., Yang, I., Choi, K.: An agent-based simulation model for analyzing the impact of asymmetric passenger demand on taxi service. KSCE J. Civ. Eng. 15(1), 187–195 (2011)

    Google Scholar 

  • Krings, G., Calabrese, F., Ratti, C., Blondel, V. D.: Urban gravity: a model for intercity telecommunication flows. J. Stat. Mech. Theory Exp. 2009, L07003 (2009)

    Google Scholar 

  • Lee, H.S.: The networkability, of cities in the international air passenger flows 1992–2004. J. Transp. Geogr. 17(3), 166–175 (2009)

    Google Scholar 

  • Lee, K., Jung, W.S., Park, J.S., Choi, M.Y.: Statistical analysis of the metropolitan Seoul subway system: network structure and passenger flows. Phys. A 387(24), 6231–6234 (2008)

    Google Scholar 

  • Lee, K., Park, J.S., Jung, W.S., Choi, M.Y.: Master equation approach to the intra-urban passenger flow and application to the metropolitan Seoul subway system. J. Phys. A Math. Theor. 44(11), 2345–2367 (2011)

    Google Scholar 

  • Lenormand, M., Bassolas, A., Ramasco, J.J.: Systematic comparison of trip distribution laws and models. J. Transp. Geogr. 51, 158–169 (2016)

    Google Scholar 

  • Li, F., Feng, Z., Li, P., You, Z.: Measuring directional urban spatial interaction in China: a migration perspective. PLoS ONE 12(1), e0171107 (2017)

    Google Scholar 

  • Liu, Y., Sui, Z., Kang, C., Gao, Y.: Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PloS One 9(1), e86026 (2014)

    Google Scholar 

  • Liu, X., Gong, L., Gong, Y., Liu, Y.: Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 43, 78–90 (2015a)

    Google Scholar 

  • Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G.H., Shi, L.: Social sensing: a new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 105(3), 512–530 (2015b)

    Google Scholar 

  • Liu, X., Kang, C., Gong, L., Liu, Y.: Incorporating spatial interaction patterns in classifying and understanding urban land use. Int. J. Geogr. Inf. Sci. 30(2), 334–350 (2016)

    Google Scholar 

  • Lovelace, R., Birkin, M., Cross, P., Clarke, M.: From big noise to big data: toward the verification of large data sets for understanding regional retail flows. Geogr. Anal. 48(1), 59–81 (2016)

    Google Scholar 

  • Newing, A., Clarke, G.P., Clarke, M.: Developing and applying a disaggregated retail location model with extended retail demand estimations. Geogr. Anal. 47(3), 219–239 (2014)

    Google Scholar 

  • Niedzielski, M.A., O’Kelly, M.E., Boschmannc, E.E.: Synthesizing spatial interaction data for social science research: validation and an investigation of spatial mismatch in Wichita, Kansas. Comput. Environ. Urban Syst. 54, 204–218 (2015)

    Google Scholar 

  • O’Kelly, M.E., Niedzielski, M.A., Gleeson, J.: Spatial interaction models from Irish commuting data: variations in trip length by occupation and gender. J. Geogr. Syst. 14(4), 357–387 (2012)

    Google Scholar 

  • O’Sullivan, S., Morral, J.: Walking distances to and from light-rail transit stations. Transp. Res. Rec. 1538(1), 19–26 (1996)

    Google Scholar 

  • Ravenstein, E.G.: The laws of migration. J. Stat. Soc. Lond. 48(2), 167–235 (1885)

    Google Scholar 

  • Roy, J. R., Thill, J. C.: Spatial interaction modelling. Pap. Reg. Sci. 83(1), 339–361 (2004)

    Google Scholar 

  • Sen, A., Smith, T.E.: Gravity Models of Spatial Interaction Behavior. Springer, Berlin (1995)

    Google Scholar 

  • Shaw, S.L., Xin, X.: Integrated land use and transportation interaction: a temporal GIS exploratory data analysis approach. J. Transp. Geogr. 11(2), 103–115 (2003)

    Google Scholar 

  • Simini, F., González, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484(7392), 96-100 (2012)

    Google Scholar 

  • Sonis, M., Hewings, G.J.D.: Regional competition and complementarity: comparative advantages/disadvantages and increasing/diminishing returns in discrete relative spatial dynamics. In: Batey, P.W.J., Friedrich, P. (eds.) Regional competition, pp. 139–158 . Springer, Berlin, Heidelberg (2000)

    Google Scholar 

  • Stouffer, S.A.: Intervening opportunities: a theory relating mobility and distance. Am. Sociol. Rev. 5(6), 845–867 (1940)

    Google Scholar 

  • Taylor, J., Catalano, G., Walker, D.: Measurement of the world city network. Urban Stud. 39(13), 2367–2376 (2002)

    Google Scholar 

  • Tobler, W.: Spatial interaction patterns. J. Environ. Sci. 6(4), 1 (1975)

    Google Scholar 

  • Tong, D., Tao, L., Guicai, L.I., Lei, Y.U.: Empirical analysis of city contact in Zhujiang (pearl) River Delta, China. Chin. Geogr. Sci. 24(3), 384–392 (2014)

    Google Scholar 

  • Tsutsumi, M., Tamesue, K.: Intraregional flow problem in spatial econometric model for origin-destination flows. Environ. Plan. B Plan. Des. 39(6), 1006–1015 (2012)

    Google Scholar 

  • Ullman, E. L.: Geography as spatial interaction. In: Interregional Linkages: Proceedings of the Western Committee on Regional Economic Analysis, pp. 63–71. University of California Press, Berkeley (1954)

  • Veenstra, S.A., Thomas, T., Tutert, S.I.A.: Trip distribution for limited destinations: a case study for grocery shopping trips in the Netherlands. Transportation 37(4), 663–676 (2010)

    Google Scholar 

  • Wang, C., Ducruet, C.: Transport corridors and regional balance in China: the case of coal trade and logistics. J. Transp. Geogr. 40, 3–16 (2014)

    Google Scholar 

  • Widhalm, P., Yang, Y., Ulm, M., Athavale, S., González, M.C.: Discovering urban activity patterns in cell phone data. Transportation 42(4), 597–623 (2015)

    Google Scholar 

  • Wilson, A.G.: A statistical theory of spatial distribution models. Transp. Res. 1(3), 253–269 (1967)

    Google Scholar 

  • Wilson, A.G.: The use of entropy maximising models in the theory of trip distribution, mode split and route split. J. Transp. Econ. Policy 3, 108–126 (1969)

    Google Scholar 

  • Wu, W., Zhang, W., Jin, F., Yu, D.: Spatio-temporal analysis of urban spatial interaction in globalizing China—a case study of Beijing–Shanghai corridor. Chin. Geogr. Sci. 19(2), 126–134 (2009)

    Google Scholar 

  • Xiao, Y., Wang, F.H., Liu, Y., Wang, J.E.: Reconstructing gravitational attractions of major cities in China from air passenger flow data, 2001–2008: a particle swarm optimization approach. Prof. Geogr. 65(2), 265–282 (2013)

    Google Scholar 

  • Yu, J.P.: Comparative advantage and trade complementarity between China and other Asian economies. World. Econ. 5, 33–40 (2003)

    Google Scholar 

  • Yan, X.Y., Zhao, C., Fan, Y., Di, Z., Wang, W.X.: Universal predictability of mobility patterns in cities. J. R. Soc. Interface 11(100), 20140834 (2014)

    Google Scholar 

  • Zheng, X., Xia, T., Yang, X., Yuan, T., Hu, Y.: The land Gini coefficient and its application for land use structure analysis in China. PLoS ONE 8(10), e76165 (2013)

    Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant Nos. 41830645, 41771169, 41371169, 41625003 and 41571145), the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources (Grant No. KF-2016-02-031), and the Smart Guangzhou Spatio-temporal Information Cloud Platform Construction (Grant No. GZIT2016-A5-147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxi Gong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, M., Lin, Y., Jin, M. et al. Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records. Transportation 47, 1607–1629 (2020). https://doi.org/10.1007/s11116-019-09977-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-019-09977-7

Keywords

Navigation