Skip to main content

I want to ride it where I like: measuring design preferences in cycling infrastructure

Abstract

Sidewalk cyclists are a major concern to planners in many cities around the world: they are considerable in numbers, and increase the risk of injury not only to pedestrians but also to themselves. Considering this, planners need evidence to design streets that nudge users into a more desirable behavior from a social perspective. This study analyzes a stated preferences survey that investigates commuters’ preferences for cycling at the sidewalk or street level. With this data, three models were calibrated: two Binomial Logit Models and an Integrated Choice and Latent Class Model. The three showed similar results in terms of preferences, with the ones including users’ characteristics providing richer behavioral insight and a better fit to observed results. On average, respondents prefer infrastructure located at the road level, especially if it is wide and not built next to bus routes. This preference for the road is even stronger in commuters that cycle to work often. We also conclude that building at the sidewalk level is not recommendable, especially in dense urban areas, and that design of cycling infrastructure can and should be informed by quantitative methods like the one proposed here.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  Google Scholar 

  2. Aldred, R., Elliott, B., Woodcock, J., Goodman, A.: Cycling provision separated from motor traffic: a systematic review exploring whether stated preferences vary by gender and age. Transp. Rev. 1647(July), 1–27 (2016)

    Google Scholar 

  3. Andrade, K., Kagaya, S.: Investigating behavior of active cyclists. Transp. Res. Rec. 2314(2314), 89–96 (2012)

    Article  Google Scholar 

  4. Aultman-Hall, L., Hall, F.L.: Ottawa–Carleton commuter cyclist on- and off-road incident rates. Accid. Anal. Prev. 30(1), 29–43 (1998)

    Article  Google Scholar 

  5. Aultman-Hall, L., Kaltenecker, M.G.: Toronto bicycle commuter safety rates. Accid. Anal. Prev. 31(6), 675–686 (1999)

    Article  Google Scholar 

  6. Beharry-Borg, N., Scarpa, R.: Valuing quality changes in Caribbean coastal waters for heterogeneous beach visitors. Ecol. Econ. 69(5), 1124–1139 (2010)

    Article  Google Scholar 

  7. Ben-Akiva, M., Lerman, S.R.: Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge (1985)

    Google Scholar 

  8. Ben-Akiva, M., Walker, J., Bernardino, A., Gopinath, D.A., Morikawa, T., Polydoropoulou, A.: Intergration of choice and latent variable models. In: Mahmassani, H. (ed.) In Perpetual Motion: Travel Behavior Research Opportunities and Application Challenges, pp. 431–470. Pergamon (2002)

  9. Bhat, C.R.: An endogenous segmentation mode choice model with an application to intercity travel. Transp. Sci. 31(1), 34–48 (1997)

    Article  Google Scholar 

  10. Bierlaire, M.: BIOGEME: a free package for the estimation of discrete choice models. In: Swiss Transport Research Conference, pp. 1–27. Ascona, Switzerland (2003)

  11. Bike Winnipeg: Commuter Cycling in Winnipeg, 2007–2015. Winnipeg, Canada. Retrieved from http://bikewinnipeg.ca/wordpress/wp-content/uploads/2016/01/Bike-Winnipeg-Commuter-Cycling-in-Winnipeg-2007-2015.pdf (2016)

  12. Blernackl, P., Waldorf, D.: Snowball sampling: problems and techniques of chain referral sampling. Sociol. Methods Res. 10(2), 141–163 (1981)

    Article  Google Scholar 

  13. Broach, J., Gliebe, J., Dill, J.: Development of a multi-class bicyclist route choice model using revealed preference data. In: 12th International Conference on Travel Behavior Research, (December) (2009)

  14. Broach, J., Dill, J., Gliebe, J.: Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transp. Res. Part A Policy Pract. 46(10), 1730–1740 (2012)

    Article  Google Scholar 

  15. Bushell, M.A., Poole, B.W., Zegeer, C.V., Rodriguez, D.A.: Costs for Pedestrian and Bicyclist Infrastructure Improvements. Pedestrian and Bicycle Information Center, Chapel Hill, NC. Retrieved from http://www.pedbikeinfo.org/cms/downloads/Countermeasure Costs_Report_Nov2013.pdf (2013)

  16. Caulfield, B., Brick, E., McCarthy, O.T.: Determining bicycle infrastructure preferences—a case study of Dublin. Transp. Res. Part D Transp. Environ. 17(5), 413–417 (2012)

    Article  Google Scholar 

  17. Chong, S., Poulos, R., Olivier, J., Watson, W.L., Grzebieta, R.: Relative injury severity among vulnerable non-motorised road users: comparative analysis of injury arising from bicycle-motor vehicle and bicycle-pedestrian collisions. Accid. Anal. Prev. 42(1), 290–296 (2010)

    Article  Google Scholar 

  18. Davies, A.-M., Laing, R.: Images and stated preference: do people need to be told what the attributes are or do they notice them anyway? In: Proceedings of the 3rd Environmental Psychology in the UK Conference, Aberdeen, UK (2003)

  19. Dill, J., Gliebe, J.: Understanding and measuring bicycling behavior: a focus on travel time and route choice. Technical Report December, Oregon Transportation Research and Education Consortium (2008)

  20. Evans-Cowley, J.S., Akar, G.: StreetSeen visual survey tool for determining factors that make a street attractive for bicycling. Transp. Res. Rec. J. Transp. Res. Board 2468, 19–27 (2014)

    Article  Google Scholar 

  21. Garrard, J., Rose, G., Lo, S.K.: Promoting transportation cycling for women: the role of bicycle infrastructure. Prev. Med. 46(1), 55–59 (2008)

    Article  Google Scholar 

  22. Green, P., Srinivasan, V.: Conjoint analysis in consumer research: issues and outlook. J. Consum. Res. 5(2), 103–123 (1978)

    Article  Google Scholar 

  23. Greene, W.H., Hensher, D.A.: A latent class model for discrete choice analysis: contrasts with mixed logit. Transp. Res. Part B Methodol. 37(8), 681–698 (2003)

    Article  Google Scholar 

  24. Grisolía, J.M., Willis, K.G.: A latent class model of theatre demand. J. Cult. Econ. 36(2), 113–139 (2012)

    Article  Google Scholar 

  25. Halldórsdóttir, K.: Land-use and network effects on bicycle route choice in the Greater Copenhagen area. In: The 2nd Symposium of the European Association for Research in Transportation (hEART), Estocolmo, Suecia (2013)

  26. Hawaii Bicycling League: O’ahu Bike Count. Retrieved from https://www.hbl.org/advocacy/bike-count/ (2016)

  27. Heiner, R.A.: The origin of predictable behavior. Am. Econ. Rev. 73(4), 560–595 (1983). https://doi.org/10.1016/0165-4896(83)90055-0

  28. Hensher, D.A.: Hypothetical bias, choice experiments and willingness to pay. Transp. Res. Part B Methodol. 44(6), 735–752 (2010)

    Article  Google Scholar 

  29. Hess, S., Ben-Akiva, M., Gopinath, D., Walker, J.: Advantages of latent class choice models over continuous mixed logit models. Presented at 12th international conference for travel behaviour research, Jaipur, India (2009)

  30. Hoffer, B.: The potential of online respondent data for choice modeling in transportation research: evidence from stated preference experiments using web-based samples. Master Thesis, ETH-Singapore Centre for Global Environmental Sustainability (SEC), Singapore (2015)

  31. Hood, J., Sall, E., Charlton, B.: A GPS-based bicycle route choice model for San Francisco, California. Transp. Lett. Int. J. Transp. Res. 3(1), 63–75 (2011)

    Article  Google Scholar 

  32. Horowitz, J.L.: Statistical comparison of non-nested probabilistic discrete choice models. Transp. Sci. 17(3), 319–350 (1983)

    Article  Google Scholar 

  33. Huber, J., Zwerina, K.: The importance of utility balance in efficient choice designs. J. Mark. Res. 33(3), 307–317 (1996)

    Article  Google Scholar 

  34. Hunt, J.D., Abraham, J.E.: Influences on bicycle use. Transportation 34(4), 453–470 (2007)

    Article  Google Scholar 

  35. Hurtubia, R., Nguyen, M.H., Glerum, A., Bierlaire, M.: Integrating psychometric indicators in latent class choice models. Transp. Res. Part A Policy Pract. 64, 135–146 (2014)

    Article  Google Scholar 

  36. Hurtubia, R., Guevara, C.A., Donoso, P.: Using images to measure qualitative attributes of public spaces through SP surveys. Transp. Res. Procedia 11, 460–474 (2015)

    Article  Google Scholar 

  37. Jansen, S., Boumeester, H., Coolen, H., Goetgeluk, R., Molin, E.: The impact of including images in a conjoint measurement task: evidence from two small-scale studies. J. Hous. Built Environ. 24(3), 271–297 (2009)

    Article  Google Scholar 

  38. Kamakura, W., Russell, G.: A probabilistic choice model for market segmentation and elasticity structure. J. Mark. Res. 26(4), 379–390 (1989)

    Article  Google Scholar 

  39. Kang, L., Fricker, J.D.: Bicyclist commuters’ choice of on-street versus off-street route segments. Transportation 40(5), 887–902 (2013)

    Article  Google Scholar 

  40. Kocur, G., Adler, T., Hyman, W.: Guide to forecasting travel demand with direct utility assessment. Technical Report, US Department of Transportation, Washington DC (1981)

  41. Krizek, K.J., Johnson, P.J., Tilahun, N.: Gender differences in bicycling behavior and facility preferences. In: Research on Women’s Issues in Transportation, Report of a Conference, Volume 2: Technical Papers. Conference Proceedings, vol. 35, pp. 31–40. Transportation Research Board, Washington, DC (2005)

    Google Scholar 

  42. Larsen, J., El-Geneidy, A.: A travel behavior analysis of urban cycling facilities in Montreal, Canada. Transp. Res Part D Transp. Environ. 16(2), 172–177 (2011)

    Article  Google Scholar 

  43. McFadden, D.: Conditional logit analysis of qualitative choice behavior. In: Zarembka, P. (ed.) Frontiers in Econometrics, pp. 105–142. Academic Press, London (1974)

    Google Scholar 

  44. Menghini, G., Carrasco, N., Schüssler, N., Axhausen, K.W.: Route choice of cyclists in Zurich. Transp. Res. Part A Policy Pract. 44(9), 754–765 (2010)

    Article  Google Scholar 

  45. Mertens, L., Van Dyck, D., Ghekiere, A., De Bourdeaudhuij, I., Deforche, B., Weghe, N.V.D., Van Cauwenberg, J.: Which environmental factors most strongly influence a street’s appeal for bicycle transport among adults? A conjoint study using manipulated photographs. Int. J. Health Geogr. 15(1), 31 (2016)

    Article  Google Scholar 

  46. Miranda, L.: Un peatón furioso. La Tercera, p. T08. Retrieved from http://diario.latercera.com/2013/02/23/01/contenido/tendencias/26-130505-9-un-peaton-furioso.shtml (2013)

  47. Moritz, W.: Adult bicyclists in the United States: characteristics and riding experience in 1996. Transp. Res. Rec. 1636(98), 1–7 (1998)

    Article  Google Scholar 

  48. MORPC: September 2015 volunteer count summary report (2015)

  49. Motoaki, Y., Daziano, R.A.: A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand. Transp. Res. Part A Policy Pract. 75, 217–230 (2015)

    Article  Google Scholar 

  50. Nicaj, L., Stayton, C., Mandel-Ricci, J., McCarthy, P., Grasso, K., Woloch, D., Kerker, B.: Bicyclist fatalities in New York City: 1996–2005. Traffic Injury Prev. 10, 157–161 (2009)

    Article  Google Scholar 

  51. Ortúzar, J.D.D., Iacobelli, A., Valeze, C.: Estimating demand for a cycle-way network. Transp. Res. Part A Policy Pract. 34(5), 353–373 (2000)

    Article  Google Scholar 

  52. Ortúzar, J.D.D., Willumsen, L.G.: Modelling Transport, 4th edn. Wiley, London (2011)

    Book  Google Scholar 

  53. Orzechowski, M.A., Arentze, T.A., Borgers, A.W.J., Timmermans, H.J.P.: Alternate methods of conjoint analysis for estimating housing preference functions: effects of presentation style. J. Hous. Built Environ. 20(4), 349–362 (2005)

    Article  Google Scholar 

  54. Reynolds, C.C.O., Harris, M.A., Teschke, K., Cripton, P.A., Winters, M.: The impact of transportation infrastructure on bicycling injuries and crashes: a review of the literature. Environ. Health 8(1), 47 (2009)

    Article  Google Scholar 

  55. Ríos, R., Taddia, A.: Ciclo-inclusión en América Latina y el Caribe: Guía para impulsar el uso de la bicicleta (2015)

  56. Saud, V.: Relevancia de los atributos del espacio público en las decisiones de ruta en bicicleta. Tesis de magíster, Universidad de Chile (2014)

  57. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  Google Scholar 

  58. SECTRA: Encuesta origen destino de viajes 2012. Technical report, Ministerio de Transportes y Telecomunicaciones, Santiago, Chile (2015)

  59. Sener, I.N., Eluru, N., Bhat, C.R.: An analysis of bicycle route choice preferences in Texas, US. Transportation 36(5), 511–539 (2009)

    Article  Google Scholar 

  60. Shen, J.: Latent class model or mixed logit model? A comparison by transport mode choice data. Appl. Econ. 41(22), 2915–2924 (2009)

    Article  Google Scholar 

  61. Stinson, M.A., Bhat, C.R.: Commuter bicyclist route choice: analysis using a stated preferences survey. Transp. Res. Rec 1828, 107–115 (2003)

    Article  Google Scholar 

  62. Stinson, M.A. Bhat, C.R.: A comparison of the route preferences of experienced and inexperienced bicycle commuters. In: Transportation Research Board 84th Annual Meeting, Vol. 512 (2005)

  63. Tilahun, N.Y., Levinson, D.M., Krizek, K.: Trails, lanes, or traffic: valuing bicycle facilities with an adaptive stated preference survey. Transp. Res. Part A Policy Pract. 41(4), 287–301 (2007)

    Article  Google Scholar 

  64. Vandenbulcke, G., Dujardin, C., Thomas, I., Geus, B.D., Degraeuwe, B., Meeusen, R., Panis, L.I.: Cycle commuting in Belgium: spatial determinants and ’re-cycling’ strategies. Transp. Res. Part A Policy Pract. 45(2), 118–137 (2011)

    Article  Google Scholar 

  65. Wachtel, A., Lewiston, D.: Risk factors for bicycle-motor vehicle collisions at intersections. J. Saf. Res. 27(3), 195 (1996)

    Google Scholar 

  66. Walker, J., Li, J.: Latent lifestyle preferences and household location decisions. J. Geogr. Syst. 9, 77–101 (2007)

    Article  Google Scholar 

  67. Wardman, M., Tight, M., Page, M.: Factors influencing the propensity to cycle to work. Transp. Res. Part A Policy Pract. 41(4), 339–350 (2007)

    Article  Google Scholar 

  68. Weigand, L., McNeil, N., Dill, J.: Cost analysis of bicycle facilities: cases from cities in the Portland, OR region. Active Living Research, Portland, OR. Retrieved from https://activelivingresearch.org/cost-analysis-bicycle-facilities-cases-cities-portland-or-region (2013)

  69. Wen, C.H., Lai, S.C.: Latent class models of international air carrier choice. Transp. Res. Part E Logist. Transp. Rev. 46(2), 211–221 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

A preliminary version of this work was presented at the 14th World Conference on Transport Research, held at Shanghai, China, during July 2016. The authors would like to acknowledge the advice given by Patricia Galilea, Professor at Pontificia Universidad Católica de Chile, and Pedro Donoso, Professor at Universidad de Chile. The research presented in this article was partly financed by FONDECYT (Project Number 11130637). The authors also gratefully acknowledge the research support provided by the Centre for Sustainable Urban Development (CEDEUS CONICYT/FONDAP 15110020), the Complex Engineering Systems Institute (ICM: P-05-004-F, CONICYT: FBO16) and the Bus Rapid Transit (ALC-BRT) Centre of Excellence funded by the Volvo Research and Educational Foundation (VREF).

Author information

Affiliations

Authors

Contributions

TR: Model estimation, manuscript writing. VS: Data collection. RH: Project creation and coordination, model estimation, manuscript writing.

Corresponding author

Correspondence to Tomás Rossetti.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rossetti, T., Saud, V. & Hurtubia, R. I want to ride it where I like: measuring design preferences in cycling infrastructure. Transportation 46, 697–718 (2019). https://doi.org/10.1007/s11116-017-9830-y

Download citation

Keywords

  • Discrete choice
  • Integrated choice and latent class models
  • Urban cycling
  • Cycling infrastructure