, Volume 45, Issue 3, pp 849–873 | Cite as

The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study

  • Amit Agarwal
  • Benjamin Kickhöfer


Negative externalities cause inefficiencies in the allocation of capacities and resources in a transport system. Marginal social cost pricing allows to correct for these inefficiencies in a simulation environment and to derive real-world policy recommendations. In this context, it has been shown for analytical models considering more than one externality, that the correlation between the externalities needs to be taken into account. Typically, in order to avoid overpricing, this is performed by introducing correction factors which capture the correlation effect. However, the correlation structure between, say, emission and congestion externalities changes for every congested facility over time of day. This makes it close to impossible to calculate the factors analytically for large-scale systems. Hence, this paper presents a simulation-based approach to calculate and internalize the correct dynamic price levels for both externalities simultaneously. For a real-world case study, it is shown that the iterative calculation of prices based on cost estimates from the literature allows to identify the amplitude of the correlation between the two externalities under consideration: for the urban travelers of the case study, emission toll levels—without pricing congestion—turn out to be 4.0% too high in peak hours and 2.8% too high in off-peak hours. In contrary, congestion toll levels—without pricing emissions—are overestimated by 3.0% in peak hours and by 7.2% in off-peak hours. With a joint pricing policy of both externalities, the paper shows that the approach is capable to determine the amplitude of the necessary correction factors for large-scale systems. It also provides the corrected average toll levels per vehicle kilometer for peak and off-peak hours for the case study under consideration: again, for urban travelers, the correct price level for emission and congestion externalities amounts approximately to 38 \({EUR}ct/\rm {km}\) in peak hours and to 30 \({EUR}ct/\rm {km}\) in off-peak hours. These toll levels can be used to derive real-world pricing schemes. Finally, the economic assessment indicators for the joint pricing policy provided in the paper allow to compare other policies to this benchmark state of the transport system.


Air pollution Congestion Vehicle emissions Road pricing Combined pricing Internalization 



Part of the material from a preliminary version of the work has been presented at the 14th International Conference on Travel Behavior Research (IATBR) 2015 in Windsor, London. Important data was provided by the Municipality of Munich, more precisely by Kreisverwaltungsreferat München and Referat für Stadtplanung und Bauordnung München. The support given by DAAD (German Academic Exchange Service) to Amit Agarwal for his PhD studies at Technische Universität Berlin is greatly acknowledged. The authors also wish to thank Kai Nagel (Technische Univsersität Berlin) for his helpful comments and H. Schwandt and N. Paschedag at the Department of Mathematics (Technische Universität Berlin), for maintaining our computing clusters. Finally, the authors are grateful to anonymous reviewers for their valuable comments. The responsibility of any remaining errors stays with the authors.


  1. Agarwal, A., Kickhöfer, B.: Agent-based simultaneous optimization of congestion and air pollution: a real-world case study. Procedia Comput. Sci. 52(C), 914–919 (2015). doi: 10.1016/j.procs.2015.05.165 CrossRefGoogle Scholar
  2. Agarwal, A., Zilske, M., Rao, K., Nagel, K.: An elegant and computationally efficient approach for heterogeneous traffic modelling using agent based simulation. Procedia Comput. Sci. 52(C), 962–967 (2015). doi: 10.1016/j.procs.2015.05.173 CrossRefGoogle Scholar
  3. Agarwal, A., Lämmel, G., Nagel, K.: Modelling of backward travelling holes in mixed traffic conditions. In: Knoop VL, Daamen W (eds.) Traffic and Granular Flow ’15. Springer, Delft (2016). doi: 10.1007/978-3-319-33482-0_53
  4. Arnott, R., de Palma, A., Lindsey, R.: Properties of dynamic traffic equilibrium involving bottlenecks, including a paradox and metering. Transp. Sci. 27(2), 148–160 (1993). doi: 10.1287/trsc.27.2.148 CrossRefGoogle Scholar
  5. Attard, M., Ison, S.: The effects of road user charges in the context of weak parking policies: the case of Malta. Case Stud. Transp. Policy 3(1), 37–43 (2015). doi: 10.1016/j.cstp.2014.07.001 CrossRefGoogle Scholar
  6. Balmer, M., Raney, B., Nagel, K.: Adjustment of activity timing and duration in an agent-based traffic flow simulation. In: Timmermans, H. (ed.) Progress in Activity-Based Analysis, pp. 91–114. Elsevier, Oxford (2005)Google Scholar
  7. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., Axhausen, K.: MATSim-T: architecture and simulation times. In: Bazzan, A., Klügl, F. (eds.) Multi-agent Systems for Traffic and Transportation, pp. 57–78. IGI Global, Hershey (2009)CrossRefGoogle Scholar
  8. Beevers, S.D., Carslaw, D.C.: The impact of congestion charging on vehicle emissions in London. Atmos. Environ. 39, 1–5 (2005). doi: 10.1016/j.atmosenv.2004.10.001 CrossRefGoogle Scholar
  9. Böhme, S., Eigenmüller, L.: Pendlerbericht Bayern. Tech. rep, IAB (2006)Google Scholar
  10. Börjesson, M., Kristoffersson, I.: The Gothenburg congestion charge. effects, design and politics. Transp. Res. Part A Policy Pract. 75, 134–146 (2015). doi: 10.1016/j.tra.2015.03.011 CrossRefGoogle Scholar
  11. Buehler, R., Pucher, J.: Sustainable transport in Freiburg: lessons from Germany’s environmental capital. Int. J. Sustain. Transp. 5(1), 43–70 (2011). doi: 10.1080/15568311003650531 CrossRefGoogle Scholar
  12. Cetin, N., Burri, A., Nagel, K.: A large-scale agent-based traffic microsimulation based on queue model. In: Swiss Transport Research Conference (STRC), Monte Verita, Switzerland., see (2003)
  13. Charypar, D., Nagel, K.: Generating complete all-day activity plans with genetic algorithms. Transportation 32(4), 369–397 (2005). doi: 10.1007/s11116-004-8287-y CrossRefGoogle Scholar
  14. Chen, L., Yang, H.: Managing congestion and emissions in road networks with tolls and rebates. Transp. Res. Part B Methodol. 46, 933–948 (2012). doi: 10.1016/j.trb.2012.03.001 CrossRefGoogle Scholar
  15. Creutzig, F., He, D.: Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. Transp. Res. Part D Transp. Environ. 14(2), 120–131 (2009). doi: 10.1016/j.trd.2008.11.007 CrossRefGoogle Scholar
  16. Daniel, J.I., Bekka, K.: The environmental impact of highway congestion pricing. J. Urban Econ. 47, 180–215 (2000). doi: 10.1006/juec.1999.2135 CrossRefGoogle Scholar
  17. Eliasson, J., Hultkrantz, L., Nerhagen, L., Rosqvist, L.S.: The Stockholm congestion—charging trial 2006: overview of effects. Transp. Res. Part A Policy Pract. 43, 240–250 (2009). doi: 10.1016/j.tra.2008.09.007 CrossRefGoogle Scholar
  18. Follmer, R., Kunert, U., Kloas, J., Kuhfeld, H.: Mobilität in Deutschland—Ergebnisbericht. Tech. rep., infas/DIW, Bonn, (2004)
  19. Gawron, C.: Simulation-based traffic assignment. Ph.D. thesis, University of Cologne, Cologne, Germany (1998)Google Scholar
  20. Ghafghazi, G., Hatzopoulou, M.: Simulating the environmental effects of isolated and area-wide traffic calming schemes using traffic simulation and microscopic emission modeling. Transportation 41, 633–649 (2014)CrossRefGoogle Scholar
  21. Horni, A., Nagel, K., Axhausen, K.W.: Introducing MATSim. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 1. (2016)
  22. Hülsmann, F., Gerikel, R., Kickhöfer, B., Nagel, K., Luz, R.: Towards a multi-agent based modeling approach for air pollutants in urban regions. In: Conference on “Luftqualität an Straßen”, Bundesanstalt für Straßenwesen, FGSV Verlag GmbH, pp. 144–166, also VSP WP 10-15, see (2011)
  23. ITP, BVU: Prognose der deutschlandweiten Verkehrsverflechtungen 2025. Tech. rep., Intraplan Consult GmbH, Beratergruppe Verkehr+Umwelt GmbH. (2007)
  24. Kaddoura, I., Kickhöfer, B.: Optimal road pricing: Towards an agent-based marginal social cost approach. VSP Working Paper 14-01, TU Berlin, Transport Systems Planning and Transport Telematics, see (2014)
  25. Kaddoura, I., Kickhöfer, B., Neumann, A., Tirachini, A.: Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness. Transportation 42(6), 1039–1061 (2015a). doi: 10.1007/s11116-014-9533-6 CrossRefGoogle Scholar
  26. Kaddoura, I., Kickhöfer, B., Neumann, A., Tirachini, A.: Optimal public transport pricing: towards an agent-based marginal social cost approach. J. Transp. Econ. Policy 49(2), 200–218 (2015b)Google Scholar
  27. Kaddoura, I., Kröger, L., Nagel, K.: User-specific and dynamic internalization of road traffic noise exposures. Netw. Spat. Econ. (2016). doi: 10.1007/s11067-016-9321-2 Google Scholar
  28. Kickhöfer, B.: Economic policy appraisal and heterogeneous users. Ph.D. thesis, TU Berlin, Berlin (2014). doi: 10.14279/depositonce-4089
  29. Kickhöfer, B., Agarwal, A.: Is marginal emission cost pricing enough to comply with the EU CO2 reduction targets? In: hEART 2015—4th Symposium of the European Association for Research in Transportation, also see VSP WP 15-16. (2015)
  30. Kickhöfer, B., Kern, J.: Pricing local emission exposure of road traffic: an agent-based approach. Transp. Res. Part D Transp. Environ. 37(1), 14–28 (2015). doi: 10.1016/j.trd.2015.04.019 CrossRefGoogle Scholar
  31. Kickhöfer, B., Nagel, K.: Microeconomic interpretation of MATSim for benefit-cost analysis. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 51. (2016a)
  32. Kickhöfer, B., Nagel, K.: Towards high-resolution first-best air pollution tolls. Netw. Spat. Econ. 16(1), 175–198 (2016b). doi: 10.1007/s11067-013-9204-8 CrossRefGoogle Scholar
  33. Kickhöfer, B., Hülsmann, F., Gerike, R., Nagel, K.: Rising car user costs: comparing aggregated and geo-spatial impacts on travel demand and air pollutant emissions. In: Vanoutrive, T., Verhetsel, A. (eds.) Smart Transport Networks: Decision Making, pp. 180–207. Edward Elgar Publishing Ltd, Sustainability and Market structure, NECTAR Series on Transportation and Communications Networks Research (2013)Google Scholar
  34. Li, X., Li, G., Pang, S.S., Yang, X., Tian, J.: Signal timing of intersections using integrated optimization of traffic quality, emissions and fuel consumption: a note. Transp. Res. Part D Transp. Environ. 9(5), 401–407 (2004). doi: 10.1016/j.trd.2004.05.001 CrossRefGoogle Scholar
  35. Lindsey, R., Verhoef, E.T.: Traffic congestion and congestion pricing. In: Hensher, D., Button, K. (eds.) Handbook of Transport Systems and Traffic Control, Handbooks in Transport, vol. 3, pp. 77–105 (2001)Google Scholar
  36. Maibach, M., Schreyer, D., Sutter, D., van Essen, H., Boon, B., Smokers, R., Schroten, A., Doll, C., Pawlowska, B., Bak, M.: Handbook on estimation of external costs in the transport sector. Tech. rep., CE Delft,, Internalisation Measures and Policies for All external Cost of Transport (IMPACT) (2008)
  37. MVV: Regionaler Nahverkehrsplan für das Gebiet des Münchner Verkehrs- und Tarifverbundes. Tech. rep, Munich Local Transport Provider (2007)Google Scholar
  38. Nagel, K.: Towards simulation-based sketch planning: some results concerning the Alaskan Way viaduct in Seattle WA. VSP Working Paper 08-22, TU Berlin, Transport Systems Planning and Transport Telematics, see (2008)
  39. Nagel, K.: Towards simulation-based sketch planning, part II: some results concerning a freeway extension in Berlin. VSP Working Paper 11-18, TU Berlin, Transport Systems Planning and Transport Telematics, see (2011)
  40. Nagel, K., Flötteröd, G.: Agent-based traffic assignment: going from trips to behavioural travelers. In: Pendyala, R., Bhat, C. (eds.) Travel Behaviour Research in an Evolving World—Selected Papers from the 12th International Conference on Travel Behaviour Research, International Association for Travel Behaviour Research, chap. 12, pp. 261–294 (2012)Google Scholar
  41. Nagel, K., Kickhöfer, B., Horni, A., Charypar, D.: A closer look at scoring. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 3. (2016)
  42. Nagurney, A.: Congested urban transportation networks and emission paradoxes. Transp. Res. Part D Transp. Environ. 5(2), 145–151 (2000). doi: 10.1016/S1361-9209(99)00031-0 CrossRefGoogle Scholar
  43. Osorio, C., Nanduri, K.: Urban trasportation emission mitigation: coupling high-resolution vehicular emissions and traffic models for traffic signal optimization. Transp. Res. Part B Methodol. 81(2), 520–538 (2015). doi: 10.1016/j.trb.2014.12.007 CrossRefGoogle Scholar
  44. Parry, I., Small, K.: Does Britain or the United States have the right gasoline tax? Am. Econ. Rev. 95(4), 1276–1289 (2005). doi: 10.1257/0002828054825510 CrossRefGoogle Scholar
  45. Percoco, M.: The effect of road pricing on traffic composition: evidence from a natural experiment in Milan, Italy. Transp. Policy 31, 55–60 (2014). doi: 10.1016/j.tranpol.2013.12.001 CrossRefGoogle Scholar
  46. Percoco, M.: Heterogeneity in the reaction of traffic flows to road pricing: a synthetic control approach applied to Milan. Transportation 42(6), 1063–1079 (2015). doi: 10.1007/s11116-014-9544-3 CrossRefGoogle Scholar
  47. Pigou, A.: The Economics of Welfare. MacMillan, New York (1920)Google Scholar
  48. Proost, S., van Dender, K.: The welfare impacts of alternative policies to address atmospheric pollution in urban road transport. Reg. Sci. Urban Econ. 31(4), 383–411 (2001). doi: 10.1016/S0166-0462(00)00079-X CrossRefGoogle Scholar
  49. Raney, B., Nagel, K.: Iterative route planning for large-scale modular transportation simulations. Future Gener. Comput. Syst. 20(7), 1101–1118 (2004). doi: 10.1016/j.future.2003.11.001 CrossRefGoogle Scholar
  50. Raney, B., Nagel, K.: An improved framework for large-scale multi-agent simulations of travel behaviour. In: Rietveld, P., Jourquin, B., Westin, K. (eds.) Towards Better Performing European Transportation Systems, pp. 305–347. Routledge, London (2006)Google Scholar
  51. Rotaris, L., Danielis, R., Marcucci, E., Massiani, J.: The urban road pricing scheme to curb pollution in Milan, Italy: description, impacts and preliminary cost-benefit analysis assessment. Transp. Res. Part A Policy Pract. 44(5), 359–375 (2010). doi: 10.1016/j.tra.2010.03.008 CrossRefGoogle Scholar
  52. RSB: Municipality of Munich: Referat für Stadtplanung und Bauordnung (2005)Google Scholar
  53. Schröder, S., Zilske, M., Liedtke, G., Nagel, K.: A computational framework for a multi-agent simulation of freight transport activities. Annual Meeting Preprint 12-4152, Transportation Research Board, Washington D.C., also VSP WP 11-19, see (2012)
  54. Shepherd, S.P.: The effect of complex models of externalities on estimated optimal tolls. Transportation 35(4), 559–577 (2008). doi: 10.1007/s11116-007-9157-1 CrossRefGoogle Scholar
  55. Tol, R.S.J.: The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties. Energy Policy 33(16), 2064–3074 (2005). doi: 10.1016/j.enpol.2004.04.002 CrossRefGoogle Scholar
  56. Turvey, R.: On divergences between social and private cost. Economica 30(119), 309–313 (1963). doi: 10.2307/2601550 CrossRefGoogle Scholar
  57. van Essen, H., Schroten, A., Otten, M., Sutter, D., Zandonella, Schreyer C, Maibach, R., M, Doll, C.: External costs of transport in Europe. Tech. rep, CE Delft (2011)Google Scholar
  58. Vickrey, W.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969)Google Scholar
  59. Wall, G.: Environmental parking charging policies: a case study of Winchester. Local Econ. 26(4), 246–259 (2011). doi: 10.1177/0269094211404624 CrossRefGoogle Scholar
  60. Walters, A.A.: The theory and measurement of private and social costs of highway congestion. Econometrica 29(4), 676–699 (1961). doi: 10.2307/1911814 CrossRefGoogle Scholar
  61. Wang, J., Chi, L., Hu, X., Zhou, H.: Urban traffic congestion pricing model with the consideration of carbon emissions cost. Sustainability 6(2), 676–691 (2014). doi: 10.3390/su6020676 CrossRefGoogle Scholar
  62. Weinreich, S., Rennings, K., Schlomann, B., Geßner, C., Engel, T.: External costs of road, rail and air transport—a bottom-up approach. ZEW Discussion Papers 98-06 (1998)Google Scholar
  63. Whitehead, J., Franklin, J.P., Washington, S.: The impact of a congestion pricing exemption on the demand for new energy efficient vehicles in Stockholm. Transp. Res. Part A Policy Pract. 70, 24–40 (2014). doi: 10.1016/j.tra.2014.09.013 CrossRefGoogle Scholar
  64. Yin, Y., Lawphongpanich, S.: Internalizing emission externality on road networks. Transp. Res. Part D Transp. Environ. 11, 292–301 (2006). doi: 10.1016/j.sbspro.2014.07.198 CrossRefGoogle Scholar
  65. Zilske, M., Schröder, S., Nagel, K., Liedtke, G.: Adding freight traffic to MATSim. VSP Working Paper 12-02, TU Berlin, Transport Systems Planning and Transport Telematics, see (2012)

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Transportation System Planning and TelematicsTechnische Universität BerlinBerlinGermany
  2. 2.Institute of Transport ResearchGerman Aerospace Center (DLR)BerlinGermany

Personalised recommendations