A statistical analysis of the dynamics of household hurricane-evacuation decisions

Abstract

With the increasing number of hurricanes in the last decade, efficient and timely evacuation remains a significant concern. Households’ decisions to evacuate/stay and selection of departure time are complex phenomena. This study identifies the different factors that influence the decision making process, and if a household decides to evacuate, what affects the timing of the execution of that decision. While developing a random parameters binary logit model of the evacuate/stay decision, several factors, such as, socio-economic characteristics, actions by authority, and geographic location, have been considered along with the dynamic nature of the hurricane itself. In addition, taking the landfall as a base, how the evacuation timing varies, considering both the time-of-day and hours before landfall, has been analyzed rigorously. Influential factors in the joint model include the relative time until the hurricane’s landfall, height of the coastal flooding, and approaching speed of the hurricane; household’s geographic location (state); having more than one child in the household, vehicle ownership, and level of education; and type of evacuation notice received (voluntary or mandatory). Two time intervals from 30 to 42 h and 42 to 66 h before landfall resulted in random parameters, reflecting mixed effects on the likelihood to evacuate/stay. Possible sources of the unobserved heterogeneity captured by the random parameters include the respondents’ risk perception or other unobserved physiological and psychological factors associated with how respondents comprehend a hurricane threat. Thus, the model serves the purpose of estimating evacuation decision and timing simultaneously using the data of Hurricane Ivan.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anastasopoulos, P.Ch., Mannering, F.L.: A note on modeling vehicle-accident frequencies with random parameter count models. Accid. Anal. Prev. 41(1), 153–159 (2009)

    Article  Google Scholar 

  2. Anastasopoulos, P.Ch., Mannering, F.L.: An empirical assessment of fixed and random parameter logit models using crash- and non-crash-specific injury data. Accid. Anal. Prev. 43(3), 1140–1147 (2011)

    Article  Google Scholar 

  3. Anastasopoulos, P.Ch., Mannering, F.L.: Analysis of pavement overlay and replacement performance using random-parameters hazard-based duration models. J. Infrastruct. Syst. 21(1), 04014024 (2015)

    Article  Google Scholar 

  4. Anastasopoulos, P.Ch., Labi, S., McCullouch, B.: Analyzing duration and prolongation of performance-based contracts using hazard-based duration and zero-inflated random parameters Poisson models. Transp. Res. Rec. 2136, 11–19 (2009)

    Article  Google Scholar 

  5. Anastasopoulos, P.Ch., Labi, S., Karlaftis, M.G., Mannering, F.L.: Exploratory State-level empirical assessment of pavement performance. J. Infrastruct. Syst. 17(4), 200–215 (2011)

    Article  Google Scholar 

  6. Anastasopoulos, P.Ch., Haddock, J.E., Karlaftis, M.G., Mannering, F.L.: Analysis of urban travel times: hazard-based approach to random parameters. Transp. Res. Rec. 2302, 121–129 (2012a)

    Article  Google Scholar 

  7. Anastasopoulos, P.Ch., Karlaftis, M., Haddock, J., Mannering, F.L.: Household automobile and motorcycle ownership analyzed with random parameters bivariate ordered probit model. Transp. Res. Rec. 2279, 12–20 (2012b)

    Article  Google Scholar 

  8. Anastasopoulos, P.Ch., Mannering, F.L., Haddock, J.: A random parameters seemingly unrelated equations approach to the post-rehabilitation performance of pavements. J. Infrastruct. Syst. 18(3), 176–182 (2012c)

    Article  Google Scholar 

  9. Anastasopoulos, P.Ch., Mannering, F.L., Shankar, V.N., Haddock, J.E.: A study of factors affecting highway accident rates using the random-parameters tobit model. Accid. Anal. Prev. 45, 628–633 (2012d)

    Article  Google Scholar 

  10. Baker, E.J.: Hurricane evacuation behavior. Int. J. Mass Emerg. Disasters 9(2), 287–310 (1991)

    Google Scholar 

  11. Behnood, A., Roshandeh, A., Mannering, F.L.: Latent class analysis of the effects of age, gender and alcohol consumption on driver-injury severities. Anal. Methods Accid. Res. 3–4, 56–91 (2014)

    Article  Google Scholar 

  12. Ben-Akiva, M., Walker, M., Bernardino, A., Gopinath, D., Morikawa, T., Polydoropoulos, A.: Integration of choice and latent variable models. In: Mahmassani, H. (ed.) In Perpetual Motion: Travel Behavior Research Opportunities and Application Challenges. Pergamon, New York (2002)

    Google Scholar 

  13. Beven II, J.L., Avila, L.A., Blake, E.S., et al.: Atlantic hurricane season of 2005. Mon. Weather Rev. 136(3), 1109–1173 (2008). doi:10.1175/2007MWR2074.1

    Article  Google Scholar 

  14. Bhat, C.: Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences. Transp. Res. B 37(9), 837–855 (2003)

    Article  Google Scholar 

  15. Dobler, C: Travel behaviour modelling for scenarios with exceptional events—methods and implementations, PhD Dissertation, IVT, ETH Zurich, Zurich (2013)

  16. Dobler, C., Kowald, M., Rieser-Schüssler, N., Axhausen, K.W.: Within-day replanning of exceptional events. Transp. Res. Rec. 2302, 138–147 (2012)

    Article  Google Scholar 

  17. Franklin, J.L., Pasch, R.J., Avila, L.A., et al.: Atlantic hurricane season of 2004. Mon. Weather Rev. 134(3), 981–1025 (2006)

    Article  Google Scholar 

  18. Fu, H., Wilmot, C.: Sequential logit dynamic travel demand model for hurricane evacuation. Transp. Res. Rec. 1882, 19–26 (2004)

    Article  Google Scholar 

  19. Gladwin, H., Peacock, W.: Warning and evacuation: a night for hard houses. In: Peacock, W., Morrow, B., Gladwin, H. (eds.) Hurricane Andrew: Ethnicity, Gender and the Sociology of Disasters. Routledge, New York (1997)

    Google Scholar 

  20. Gladwin, C., Gladwin, H., Peacock, W.: Modeling hurricane evacuation decisions with ethnographic methods. Int. J. Mass Emerg. Disasters 19(2), 117–143 (2001)

    Google Scholar 

  21. Greene, W.: LIMDEP Version 9.0. Econometric Software Inc., Plainview (2007)

    Google Scholar 

  22. Gudishala, R., Wilmot, C.: Comparison of time-dependent sequential logit and nested logit for modeling hurricane evacuation demand. Transp. Res. Rec. 2312, 134–140 (2012)

    Article  Google Scholar 

  23. Hamed, M., Mannering, F.L.: Modeling travelers’ post-work activity involvement: toward a new methodology. Transp. Sci 27(4), 381–394 (1993)

    Article  Google Scholar 

  24. Hasan, S., Ukkusuri, S.V., Gladwin, H., Murray-Tuite, P.: Behavioral model to understand household-level hurricane evacuation decision making. J Transp. Eng. ASCE 137(5), 341–348 (2011)

    Article  Google Scholar 

  25. Hasan, S., Mesa-Arango, R., Ukkusuri, S.V.: A random-parameter hazard-based model to understand household evacuation timing behavior. Transp. Res. C 27, 108–116 (2013)

    Article  Google Scholar 

  26. Koot, J.M., Kowald, M., Axhausen, K.W.: Modelling behaviour during a large-scale evacuation: a latent class model to predict evacuation behaviour, paper presented at the12th Swiss Transport Research Conference, Ascona, May 2012

  27. Lindell, M., Lu, J., Prater, C.: Household decision making and evacuation in response to Hurricane Lili. Nat. Hazards Rev. 6(4), 171–179 (2005)

    Article  Google Scholar 

  28. Lindell, M., Kang, J., Prater, C.: The logistics of household hurricane evacuation. Nat. Hazards Rev. 58(3), 1093–1109 (2011)

    Article  Google Scholar 

  29. McFadden, D.: Econometric models of probabilistic choice. In: Manski, C., McFadden, D. (eds.) Structural Analysis of Discrete Data with Econometric Applications. MIT Press, Cambridge (1981)

    Google Scholar 

  30. Morrow, B., Gladwin, H.: Hurricane Ivan behavioral analysis, 2004 hurricane assessments. Federal Emergency Management Agency and US Army Corps of Engineers, Washington, DC (2005)

  31. Murray-Tuite, P., Wolshon, B.: Evacuation transportation modeling: an overview of research, development, and practice. Transp. Res C 27, 25–45 (2013)

    Article  Google Scholar 

  32. Nelson, C., Crumley, C., Fritzsche, B., Adcock, B.: Lower Southeast Florida Hurricane Evacuation Study. US Army Corps of Engineers, Jacksonville, Florida (1989)

  33. Ozguven, E.E., Horner, M.W., Kocatepea, A., Marcelinb, J.M., Abdelraziga, Y., Sandoc, T., Mosesa, R.: Metadata-based needs assessment for emergency transportation operations with a focus on an aging population: a case study in Florida. Transp. Rev. (2015). doi:10.1080/01441647.2015.1082516

    Google Scholar 

  34. Pel, A., Bliemer, M., Hoogendoorn, S.: A review on travel behaviour modelling in dynamic traffic simulation models for evacuations. Transportation 39(1), 97–123 (2012)

    Article  Google Scholar 

  35. Petrolia, D., Bhattacharjee, S.: Why don’t coastal residents choose to evacuate for hurricanes? Coast. Manag. 38(2), 97–112 (2010)

    Article  Google Scholar 

  36. Russo, B., Savolainen, P., Schneider, W., Anastasopoulos, P.Ch.: Comparison of factors affecting injury severity in angle collisions by fault status using a random parameters bivariate ordered probit model. Anal. Methods Accid. Res. 2, 21–29 (2014)

    Article  Google Scholar 

  37. Solis, D., Thomas, M., Letson, D.: An empirical evaluation of the determinants of household hurricane evacuation choice. J. Dev. Agric. Econ. 2(3), 188–196 (2010)

    Google Scholar 

  38. Sorensen, J.: Hazard warning systems: review of 20 years of progress. Nat. Hazards Rev. 1(2), 119–125 (2000)

    Article  Google Scholar 

  39. Stewart, S.R.: Tropical cyclone report-Hurricane Ivan 2-24 September 2004. National Hurricane Center, Miami (2005)

    Google Scholar 

  40. Train, K.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  41. Train, K: Halton sequences for mixed logit. Working paper. University of California, Department of Economics, Berkeley (1999)

  42. Washington, S.P., Karlaftis, M.G., Mannering, F.L.: Statistical and Econometric Methods for Transportation Data Analysis, 2nd edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  43. Whitehead, J.C., Edwards, B., Van Willigen, M., Maiolo, J.R., Wilson, K., Smith, K.: Heading for higher ground: factors affecting real and hypothetical hurricane evacuation behavior. Environ. Hazards 2(4), 133–142 (2000)

    Article  Google Scholar 

  44. Widener, M.J., Horner, M.W., Metcalf, S.S.: Simulating the effects of social networks on a population’s hurricane evacuation participation. J. Geogr. Syst. 15, 193–209 (2013)

    Article  Google Scholar 

  45. Wilmot, C.G., Mei, B.: Comparison of alternative trip generation models for Hurricane evacuation. Nat. Hazards Rev. 5(4), 170–178 (2004)

    Article  Google Scholar 

  46. Wolshon, B.: Evacuation planning and engineering for Hurricane Katrina. Bridge 36(1), 27–34 (2006)

    Google Scholar 

  47. Young, R.K., Liesman, J.: Estimating the relationship between measured wind speed and overturning truck crashes using a binary logit model. Accid. Anal. Prev. 39(3), 574–580 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The research presented in this paper was supported by the National Science Foundation Awards SES 0826873 and CMMI 1520338; and CMMI 105544 for which the authors are grateful. However, the authors are solely responsible for the findings of the research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Md Tawfiq Sarwar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarwar, M.T., Anastasopoulos, P.C., Ukkusuri, S.V. et al. A statistical analysis of the dynamics of household hurricane-evacuation decisions. Transportation 45, 51–70 (2018). https://doi.org/10.1007/s11116-016-9722-6

Download citation

Keywords

  • Emergency management
  • Dynamics of hurricane evacuation
  • Joint modeling of evacuation decision and timing
  • Unbalanced panel data
  • Random parameters
  • Binary logit model