Skip to main content
Log in

Isolating high-priority metro and feeder bus transfers using smart card data

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Fixed-rail metro (or ‘subway’) infrastructure is generally unable to provide access to all parts of the city grid. Consequently, feeder bus lines are an integral component of urban mass transit systems. While passengers prefer a seamless transfer between these two distinct transportation services, each service’s operations are subject to a different set of factors that contribute to metro-bus transfer delay. Previous attempts to understand transfer delay were limited by the availability of tools to measure the time and cost associated with passengers’ transfer experience. This paper uses data from smart card systems, an emerging technology that automatically collects passenger trip data, to understand transfer delay. The primary objective of this study is to use smart card data to derive a reproducible methodology that isolates high priority transfer points between the metro system and its feeder-bus systems. The paper outlines a methodology to identify transfer transactions in the smart card dataset, estimate bus headways without the aid of geographic location information, estimate three components of the total transfer time (walking time, waiting time, and delay time), and isolate high-priority transfer pairs. The paper uses smart card data from Nanjing, China as a case study. The results isolate eight high priority metro-bus transfer pairs in the Nanjing metro system and finally, offers several targeted measures to improve transfer efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bagchi, M., White, P.R.: The potential of public transport smart card data. Transp. Policy 12, 464–474 (2005). doi:10.1016/j.tranpol.2005.06.008

    Article  Google Scholar 

  • Barry, J., Newhouser, R., Rahbee, A., Sayeda, S.: Origin and destination estimation in new york city with automated fare system data transportation research record. J. Transp. Res. Board. 1817, 183–187 (2002)

    Article  Google Scholar 

  • Chowdhury, S., Ceder, A.: A psychological investigation on public-transport users’ intention to use routes with transfers. Int. J. Transp. 1, 1–20 (2013). doi:10.14257/ijt.2013.1.1.01

    Article  Google Scholar 

  • Devillaine, F., Munizaga, M., Trépanier, M.: Detection of activities of public transport users by analyzing smart card data transportation research record. J. Transp. Res. Board. 2276, 48–55 (2012). doi:10.3141/2276-06

    Article  Google Scholar 

  • Diab, E.I., El-Geneidy, A.M.: Understanding the impacts of a combination of service improvement strategies on bus running time and passenger’s perception. Transp. Res. Part. 46, 614–625 (2012). doi:10.1016/j.tra.2011.11.013

    Google Scholar 

  • Ferrari, L., Berlingerio, M., Calabrese, F., Reades, J.: Improving the accessibility of urban transportation networks for people with disabilities. Transp. Res. Part. 45, 27–40 (2014). doi:10.1016/j.trc.2013.10.005

    Article  Google Scholar 

  • Guo, Z., Wilson, N.H.M.: Assessing the cost of transfer inconvenience in public transport systems: a case study of the London Underground. Transp Res. Part. 45, 91–104 (2011). doi:10.1016/j.tra.2010.11.002

    Google Scholar 

  • Jang, W.: Travel time and transfer analysis using transit smart card data transportation research record. J.Transp. Res. Board. 2144, 142–149 (2010). doi:10.3141/2144-16

    Article  Google Scholar 

  • Kusakabe, T., Asakura, Y.: Behavioural data mining of transit smart card data: a data fusion approach. Transp. Res. Part. 46, 179–191 (2014). doi:10.1016/j.trc.2014.05.012

    Article  Google Scholar 

  • Kusakabe, T., Iryo, T., Asakura, Y.: Estimation method for railway passengers’ train choice behavior with smart card transaction data. Transportation 37, 731–749 (2010). doi:10.1007/s11116-010-9290-0

    Article  Google Scholar 

  • Ma, X., Wang, Y.: Development of a data-driven platform for transit performance measures using smart card and GPS data. J. Transp. Eng. 140, 04014063 (2014). doi:10.1061/(asce)te.1943-5436.0000714

    Article  Google Scholar 

  • Ma, Z., Xing, J., Mesbah, M., Ferreira, L.: Predicting short-term bus passenger demand using a pattern hybrid approach. Transp. Res. Part. 39, 148–163 (2014). doi:10.1016/j.trc.2013.12.008

    Article  Google Scholar 

  • Morency, C., Trépanier, M., Agard, B.: Measuring transit use variability with smart-card data. Transp. Policy 14, 193–203 (2007). doi:10.1016/j.tranpol.2007.01.001

    Article  Google Scholar 

  • Munizaga, M., Devillaine, F., Navarrete, C., Silva, D.: Validating travel behavior estimated from smartcard data. Transp. Res. Part. 44, 70–79 (2014). doi:10.1016/j.trc.2014.03.008

    Article  Google Scholar 

  • Munizaga, M.A., Palma, C.: Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from Santiago. Chile. Transp. Res. Par. 24, 9–18 (2012). doi:10.1016/j.trc.2012.01.007

    Article  Google Scholar 

  • Nanjing Planning Bureau: Nanjing Transport Annual Report. Nanjing (2014)

  • Osuna, E.E., Newell, G.F.: Central strategies for an idealized public transport system. Transp. Sci. 6, 52–72 (1972)

    Article  Google Scholar 

  • Pelletier, M.-P., Trépanier, M., Morency, C.: Smart card data use in public transit: a literature review. Transp. Res. Part. 19, 557–568 (2011). doi:10.1016/j.trc.2010.12.003

    Article  Google Scholar 

  • Robinson, S., Narayanan, B., Toh, N., Pereira, F.: Methods for pre-processing smartcard data to improve data quality. Transp Res. Part. 49, 43–58 (2014). doi:10.1016/j.trc.2014.10.006

    Article  Google Scholar 

  • Schmöcker, J.-D., Shimamoto, H., Kurauchi, F.: Generation and calibration of transit hyperpaths. Transp Res. Part. 36, 406–418 (2013). doi:10.1016/j.trc.2013.06.014

    Article  Google Scholar 

  • Seaborn, C., Attanucci, J., Wilson, N.: Analyzing multimodal public transport journeys in london with smart card fare payment data. Transp. Res. Rec. 2121, 55–62 (2009). doi:10.3141/2121-06

    Article  Google Scholar 

  • Si, B., Zhong, M., Liu, J., Gao, Z., Wu, J.: Development of a transfer-cost-based logit assignment model for the Beijing rail transit network using automated fare collection data. J. Advan. Transp. 47, 297–318 (2013). doi:10.1002/atr.1203

    Article  Google Scholar 

  • Sun, L., Jin, J., Lee, D.H., Axhausen, K.W.: (2015a) Characterizing Multimodal Transfer Time Using Smart Card Data: the Effect of Time, Passenger Age, Crowdedness and Collective Pressure. In: Paper presented at the Transportation Research Board, Washington DC

  • Sun, L., Jin, J.G., Lee, D.-H., Axhausen, K.W., Erath, A.: Demand-driven timetable design for metro services. Transp. Res. Part. 46, 284–299 (2014a). doi:10.1016/j.trc.2014.06.003

    Article  Google Scholar 

  • Sun, L., Lu, Y., Jin, J.G., Lee, D.-H., Axhausen, K.W.: An integrated Bayesian approach for passenger flow assignment in metro networks. Transp. Res. 52, 116–131 (2015b). doi:10.1016/j.trc.2015.01.001

    Google Scholar 

  • Sun, L., Tirachini, A., Axhausen, K.W., Erath, A., Lee, D.-H.: Models of bus boarding and alighting dynamics. Transp. Res. Part. 69, 447–460 (2014b). doi:10.1016/j.tra.2014.09.007

    Google Scholar 

  • Trépanier, M., Habib, K.M.N., Morency, C.: Are transit users loyal? revelations from a hazard model based on smart card data. Can. J. Civ. Eng. 39, 610–618 (2012). doi:10.1139/l2012-048

    Article  Google Scholar 

  • Trépanier, M., Morency, C., Agard, B.: Calculation of transit performance measures using smartcard data. J. Public. Transp. 12, 79–96 (2009)

    Article  Google Scholar 

  • Welde, M.: Are smart card ticketing systems profitable—evidence from the city of Trondheim. J. Public Transp. 15, 133–148 (2012)

    Article  Google Scholar 

  • Zhao, J., Frumin, M., Wilson, N., Zhao, Z.: Unified estimator for excess journey time under heterogeneous passenger incidence behavior using smartcard data. Transp. Res. Part. C 34, 70–88 (2013). doi:10.1016/j.trc.2013.05.009

    Article  Google Scholar 

  • Zhao, J., Rahbee, A., Wilson, N.: Estimating a rail passenger trip origin-destination matrix using automatic data collection systems. Comput. Aided. Civ. Infrastruct. Eng. 22, 376–387 (2007)

    Article  Google Scholar 

  • Zhou, J., Murphy, E., Long, Y.: Commuting efficiency in the Beijing metropolitan area: an exploration combining smartcard and travel survey data. J. Transp. Geogr. 41, 175–183 (2014). doi:10.1016/j.jtrangeo.2014.09.006

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by Fundamental Research Funds for the Central Universities (CXZZ13_0118), the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1457), the key project of National Natural Science Foundation of China (51338003), and Projects of International Cooperation and Exchange of the National Natural Science Foundation of China (5151101143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De Zhao.

GLOSSARY

Metro-bus transfer transaction

A transfer transaction is a smart card transaction that occurred during the process of a metro-bus transfer. This may be either a metro transaction or a bus transaction.

Metro-bus transfer trip

One transfer trip is comprised of one metro transaction and one subsequent bus transaction. Two smart card transactions are required to identify one metro-bus transfer trip. The transfer trips are identified according to the two ‘recognition’ rules outlined in the methodology section.

Metro-bus transfer pair

One transfer pair is comprised of one metro station ID and one bus line ID.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Wang, W., Woodburn, A. et al. Isolating high-priority metro and feeder bus transfers using smart card data. Transportation 44, 1535–1554 (2017). https://doi.org/10.1007/s11116-016-9713-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-016-9713-7

Keywords

Navigation