, Volume 44, Issue 6, pp 1475–1497 | Cite as

Network concentration indices for less-than-truckload transportation

  • Anne LangeEmail author
  • Werner Delfmann


An efficient and service-oriented transportation network is a necessary resource for successful less-than-truckload operations. The design and evaluation of transportation networks are mainly driven by quantitative particularly cost-oriented measures, such as transport and transshipment costs. This type of measurement, however, simply cannot represent the manifold performance of a transportation network. In particular, incorporating network concentration into network design decisions overcomes the shortcomings of purely cost-oriented decisions because spatial network concentration is at the root of many aspects of network performance (e.g., congestion and network vulnerability). This paper suggests modifications to the network concentration index and the hubbing concentration index from the passenger airline context for less-than-truckload road transportation. The modified indices enable information to be conveyed by network concentration into less-than-truckload network design decisions and provide a suitable perspective to include service-oriented aspects into network design.


Less-than-truckload Transportation network Network concentration Congestion Vulnerability 


  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefGoogle Scholar
  2. Barcos, L., Rodríguez, V., Álvarez, M., Robusté, F.: Routing design for less-than-truckload motor carriers using ant colony optimization. Transp. Res. Part E: Logist. Transp. Rev. 46(3), 367–383 (2010)CrossRefGoogle Scholar
  3. Bavelas, A.: A mathematical model for group structures. Hum. Org. 7(3), 16–30 (1948)CrossRefGoogle Scholar
  4. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950)CrossRefGoogle Scholar
  5. Borenstein, S.: The dominant-firm advantage in multiproduct industries: evidence from the U.S. airlines. Q. J. Econ. 106(4), 1237–1266 (1991)CrossRefGoogle Scholar
  6. Borenstein, S.: The evolution of U.S. airline competition. J. Econ. Perspect. 6(2), 45–73 (1992)CrossRefGoogle Scholar
  7. Burghouwt, G.: Airline Network Development in Europe and Its Implications for Airport Planning. Ashgate, Burlington (2007)Google Scholar
  8. Burghouwt, G., Hakfoort, J., Ritsema van Eck, J.: The spatial configuration of airline networks in Europe. J. Air Transp. Manag. 9(5), 309–323 (2003)CrossRefGoogle Scholar
  9. Cheung, R.K., Muralidharan, B.: Impact of dynamic decision making on hub-and-spoke freight transportation networks. Ann. Op. Res. 87, 49–71 (1999)CrossRefGoogle Scholar
  10. Cheung, R.K., Muralidharan, B.: Dynamic routing for priority shipments in LTL service networks. Transp. Sci. 34(1), 86–98 (2000)CrossRefGoogle Scholar
  11. Cidell, J.: Concentration and decentralization: the new geography of freight distribution in US metropolitan areas. J. Transp. Geogr. 18(3), 363–371 (2010)CrossRefGoogle Scholar
  12. Costa, T.F.G., Lohmann, G., Oliveira, A.V.M.: A model to identify airport hubs and their importance to tourism in Brazil. Res. Transp. Econ. 26(1), 3–11 (2010)CrossRefGoogle Scholar
  13. Crainic, T.G.: Service network design in freight transportation. Eur. J. Op. Res. 122(2), 272–288 (2000)CrossRefGoogle Scholar
  14. Crainic, T.G., Laporte, G.: Planning models for freight transportation. Eur. J. Op. Res. 97(3), 409–438 (1997)CrossRefGoogle Scholar
  15. Cunha, C.B., Silva, M.R.: A genetic algorithm for the problem of configuring a hub-and-spoke network for a LTL trucking company in Brazil. Eur. J. Oper. Res. 179(3), 747–758 (2007)CrossRefGoogle Scholar
  16. Daganzo, C.F.: The break-bulk role of terminals in many-to-many logistic networks. Op. Res. 35(4), 543–555 (1987)CrossRefGoogle Scholar
  17. Debbage, K.G., Delk, D.: The geography of air passenger volume and local employment patterns by US metropolitan core area: 1973–1996. J. Air Transp. Manag. 7(3), 159–167 (2001)CrossRefGoogle Scholar
  18. Delfmann, W.: Hub-and-Spoke-Systeme. In: Klaus, P., Krieger, W. (eds.) Gabler Lexikon Logistik, 2nd edn, pp. 189–190. Gabler, Wiesbaden (2000)Google Scholar
  19. Derigs, U., Friederichs, S., Schäfer, S.: A new approach for air cargo network planning. Transp. Sci. 43(3), 370–380 (2009)CrossRefGoogle Scholar
  20. Derudder, B., Witlox, F.: The impact of progressive liberalization on the spatiality of airline networks: a measurement framework based on the assessment of hierarchical differentiation. J. Transp. Geogr. 17(4), 276–284 (2009)CrossRefGoogle Scholar
  21. Doganis, R.: Flying Off Course: The Economics of International Airlines, 3rd edn. Routledge, London (2002)Google Scholar
  22. Erera, A., Karacik, B., Savelsbergh, M.: A dynamic driver management scheme for less-than-truckload carriers. Comput. Oper. Res. 35(11), 3397–3411 (2008)CrossRefGoogle Scholar
  23. FAA (2013) Federal Aviation Administration. (last accessed Nov 5, 2013)
  24. Freeman, L.C.: Centrality in social networks: conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRefGoogle Scholar
  25. Hall, R.W., Zhong, H.: Decentralized inventory control policies for equipment management in a many-to-many network. Transp. Res. Part A: Policy Pract. 36(10), 849–865 (2002)Google Scholar
  26. Hensher, D.A.: Determining passenger potential for a regional airline hub at Canberra International Airport. J. Air Transp. Manag. 8(5), 301–311 (2002)CrossRefGoogle Scholar
  27. Hesse, M., Rodrigue, J.P.: The transport geography of logistics and freight distribution. J. Transp. Geogr. 12(3), 171–184 (2004)CrossRefGoogle Scholar
  28. Huber, H.: Comparing spatial concentration and assessing relative market structure in air traffic. J. Air Transp. Manag. 15(4), 184–194 (2009a)CrossRefGoogle Scholar
  29. Huber, H.: Spatial structure and network behaviour of strategic airline groups: a comparison between Europe and the United States. Transp. Policy 16(4), 151–162 (2009b)CrossRefGoogle Scholar
  30. Ishfaq, R.: LTL logistics networks with differentiated services. Comput. Oper. Res. 39(11), 2867–2879 (2012)CrossRefGoogle Scholar
  31. Jara-Díaz, S.R., Basso, L.J.: Transport cost functions, network expansion and economies of scope. Transp. Res. Part E: Logist. Transp. Rev. 39(4), 271–288 (2003)CrossRefGoogle Scholar
  32. Kim, H., O’Kelly, M.E.: Reliable p-hub location problems in telecommunication networks. Geogr. Anal. 41(3), 283–306 (2009)CrossRefGoogle Scholar
  33. Klaus, P., Hartmann, E., Kille, C.: TOP 100 in European Transport and Logistics Services. Deutscher Verkehrs-Verlag, Hamburg (2009)Google Scholar
  34. Klibi, W., Martel, A., Guitouni, A.: The design of robust value-creating supply chain networks: a critical review. Eur. J. Oper. Res. 203(2), 283–293 (2010)CrossRefGoogle Scholar
  35. Lederer, P.J., Nambimadom, R.S.: Airline network design. Oper. Res. 46(6), 785–804 (1998)CrossRefGoogle Scholar
  36. Magnanti, T.L., Wong, R.T.: Network design and transportation planning: models and algorithms. Transp. Sci. 18(1), 1–55 (1984)CrossRefGoogle Scholar
  37. Martín, J.C., Voltes-Dorta, A.: Theoretical evidence of existing pitfalls in measuring hubbing practices in airline networks. Netw. Spat. Econ. 8(2/3), 161–181 (2008)CrossRefGoogle Scholar
  38. Martín, J.C., Voltes-Dorta, A.: A note on how to measure hubbing practices in airline networks. Transp. Res. Part E: Logist. Transp. Rev. 45(1), 250–254 (2009)CrossRefGoogle Scholar
  39. McShan, S., Windle, R.: The implications of hub-and-spoke routing for airline costs and competitiveness. Logist. Transp. Rev. 25(3), 209–230 (1989)Google Scholar
  40. Meixell, M.J., Gargeya, V.B.: Global supply chain design: a literature review and critique. Transp. Res. Part E: Logist. Transp. Rev. 41(6), 531–550 (2005)CrossRefGoogle Scholar
  41. Melo, M.T., Nickel, S., Saldanha da Gama, F.: Facility location and supply chain management—a review. Eur. J. Oper. Res. 196(2), 401–412 (2009)CrossRefGoogle Scholar
  42. O’Connor, K.: Global air travel: toward concentration or dispersal? J. Transp. Geogr. 11(2), 83–92 (2003)CrossRefGoogle Scholar
  43. Papatheodorou, A., Arvanitis, P.: Spatial evolution of airport traffic and air transport liberalisation: the case of Greece. J. Transp. Geogr. 17(5), 402–412 (2009)CrossRefGoogle Scholar
  44. Paul, A.: Centrality in Strategic Transportation Network Design. Kölner Wissenschaftsverlag, Köln (2011)Google Scholar
  45. Powell, W.B.: A local improvement heuristic for the design of less-than-truckload motor carrier networks. Transp. Sci. 20(4), 246–257 (1986)CrossRefGoogle Scholar
  46. Powell, W.B., Sheffi, Y.: The load planning problem of motor carriers: problem description and a proposed solution approach. Transp. Res. Part A: General 17(6), 471–480 (1983)CrossRefGoogle Scholar
  47. Reggiani, A., Signoretti, S., Nijkamp, P., Cento, A.: Network measures in civil air transport: a case study of Lufthansa. In: Naimzada, A.K., Stefani, S., Torriero, A. (eds.) Networks, Topology and Dynamics: Theory and Applications to Economics and Social Systems. Lecture Notes in Economics and Mathematical Systems, vol. 613, pp. 257–282. Berlin, Heidelberg (2009)CrossRefGoogle Scholar
  48. Reynolds-Feighan, A.J.: The impact of U.S. airline deregulation on airport traffic patterns. Geogr. Anal. 30(3), 234–253 (1998)CrossRefGoogle Scholar
  49. Reynolds-Feighan, A.J.: Traffic distribution in low-cost and full-service carrier networks in the US air transportation market. J. Air Transp. Manag. 7(5), 265–275 (2001)CrossRefGoogle Scholar
  50. Rodrigue, J.P., Comtois, C., Slack, B.: The Geography of Transport Systems, 3rd edn. Routledge Chapman & Hall, London (2013)Google Scholar
  51. Saunders, L.F., Shepherd, W.G.: Airlines: setting constraints on hub dominance. Logist. Transp. Rev. 29(3), 201–220 (1993)Google Scholar
  52. Suau-Sanchez, P., Burghouwt, G.: The geography of the spanish airport system: spatial concentration and deconcentration patterns in seat capacity distribution, 2001–2008. J. Transp. Geogr. 19(2), 244–254 (2011)CrossRefGoogle Scholar
  53. Taylor, M.A.P., D’Este, G.M.: Transport network vulnerability: a method for dignosis of cirtical locations in infrastructure systems. In: Murray, A.T., Grubesic, T.H. (eds.) Critical Infrastructure: Reliability and Vulnerability. Advances in Spatial Science, pp. 9–30. Springer, Berlin (2007)CrossRefGoogle Scholar
  54. Tirole, J.: The Theory of Industrial Organization. MIT Press, Cambridge (1988)Google Scholar
  55. Toh, R.S., Higgins, R.G.: The impact of hub and spoke network centralization and route monopoly on domestic airline profitability. Transp. J. 24(4), 16–27 (1985)Google Scholar
  56. Ukkusuri, S.V., Patil, G.: Multi-period transportation network design under demand uncertainty. Transp. Res. Part B: Methodol. 43(6), 625–642 (2009)CrossRefGoogle Scholar
  57. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  58. Wieberneit, N.: Service network design for freight transportation: a review. OR Spectr. 30(1), 77–112 (2008)CrossRefGoogle Scholar
  59. Wojahn OW (2001) Airline networks. Volkswirtschaftliche analysen, Peter Lang, Frankfurt am Main et alGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Business Policy and LogisticsUniversity of CologneCologneGermany

Personalised recommendations