Advertisement

Transportation

, Volume 44, Issue 6, pp 1445–1473 | Cite as

Impacts of urban built environment on empty taxi trips using limited geolocation data

  • Wenbo Zhang
  • Satish V. UkkusuriEmail author
  • Jian John Lu
Article

Abstract

This study identifies the determinants of the empty taxi trip duration (ETTD) by combining three high-resolution databases—geolocation data in New York City, geodatabase of urban planning data, and transportation facilities data. Considering the nature of duration data, hazard-based duration model is proposed to explore the relationships between causal factors and ETTD, coupling with three variations of baseline hazard distribution, i.e., Weibull distribution with heterogeneity, Weibull distribution, and log-logistic. Furthermore, the likelihood ratio test is presented to implement comparisons of three baseline hazard distributions, as well as spatial and temporal transferability of causal factors. The results show significant complementary effects by subway system and competitive effects by city bus and bicycling system, as well as significant impacts of trip length, airport trip, average annual income, and employment rate. Urban built environment, for instance, density of road, public facilities, and recreational sites and ratio of green space, has various impacts on ETTD. The elasticity estimations confirm significant spatial and temporal heterogeneity in impacts on ETTD. In addition, the analysis on elasticity also reveals the considerable impacts of severe traffic congestion on ETTD within Manhattan. The modeling can assist stakeholders in understanding empty taxi movements and measuring taxi system efficiency in urban areas.

Keywords

Empty taxi trip duration Hazard-based duration model Built environment Land use and socio-economics Spatial and temporal heterogeneity 

Notes

Acknowledgments

We thank the three anonymous reviewers for provided helpful comments on earlier draft of the manuscript. In addition, thank China Scholarship Council for funding to support Wenbo’s study and research.

Supplementary material

11116_2016_9709_MOESM1_ESM.xlsx (49 kb)
Supplementary material 1 (XLSX 48 kb)

References

  1. Austin, D., Zegras, P.C.: The taxicab as public transportation in Boston. Transp. Res. Rec. 2277, 65–74 (2012). doi: 10.3141/2277-08 CrossRefGoogle Scholar
  2. Bhat, C.R.: A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity. Transp. Res. Part B 30(3), 189–207 (1996a). doi: 10.1016/0191-2615(95)00029-1 CrossRefGoogle Scholar
  3. Bhat, C.R.: A generalized multiple durations proportional hazard model with an application to activity behavior during the evening work-to-home commute. Transp. Res. Part B 30(6), 465–480 (1996b). doi: 10.1016/0191-2615(96)00007-0 CrossRefGoogle Scholar
  4. Bohte, W., Maat, K.: Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: a large-scale application in the Netherlands. Transp. Res. Part C 17(3), 285–297 (2009). doi: 10.1016/j.trc.2008.11.004 CrossRefGoogle Scholar
  5. Chen, C., Gong, H.M., Lawson, C., Bialostozky, E.: Evaluating the feasibility of a passive travel survey collection in a complex urban environment: lessons learned from the New York City case study. Transp. Res. Part A 44(10), 830–840 (2010). doi: 10.1016/j.tra.2010.08.004 Google Scholar
  6. Chen, M., Xuan, H.: A multiple search strategies based simulation model for cruising taxi operation system. Paper presented at the 2010 International Conference on Biomedical Engineering and Computer Science, Wuhan, China, April 23–25, 2010. doi: 10.1109/ICBECS.2010.5462519
  7. Chen, M., Zhao, X.: Vacant Taxi Strategies and System Performance of Cruising Taxi Operation System. Paper presented at the 2011 International Conference on Electric Technology and Civil Engineering, Lushan, China (2011). doi: 10.1109/ICETCE.2011.5776486
  8. Downs, J.A., Horner, M.W.: Probabilistic potential path trees for visualizing and analyzing vehicle tracking data. J. Transp. Geogr. 23, 72–80 (2012). doi: 10.1016/j.jtrangeo.2012.03.017 CrossRefGoogle Scholar
  9. Flores-Guri, D.: Local exclusive cruising regulation and efficiency in taxicab markets. J. Transp. Econ. Policy 39(2), 155–166 (2005). doi: 10.1016/j.tra.2010.03.004 Google Scholar
  10. Hasan, S., Mesa-Arango, R., Ukkusuri, S.V.: A random-parameter hazard-based model to understand household evacuation timing behavior. Transp. Res. Part C 27, 108–116 (2013). doi: 10.1016/j.trc.2011.06.005 CrossRefGoogle Scholar
  11. Hou, Y., Li, X., Zhao, Y., Jia, X., Sadek, A.W., Hulme, K., Qiao, C.: Towards Efficient Vacant Taxis Cruising Guidance. Globecom 2013-Ad Hoc and Sensor Networking Symposium (2013). doi: 10.1007/s11390-014-1450-9
  12. Horner, M.W., Downs, J.A.: Integrating people and place: a density-based measure for assessing accessibility for opportunities. J. Transp. Land Use 7(2), 23–40 (2014). doi: 10.5198/jtlu.v7i2.417 CrossRefGoogle Scholar
  13. Hu, X., Gao, S., Chiu, Y.C., Lin, D.Y.: Modeling behavior for vacant taxicabs in urban traffic networks. Transp. Res. Rec. 2284, 81–88 (2012). doi: 10.3141/2284-10 CrossRefGoogle Scholar
  14. Kharoufeh, J.P., Goulias, K.G.: Nonparametric identification of daily activity durations using kernel density estimators. Transp. Res. Part B 36, 59–82 (2002). doi: 10.1016/S0191-2615(00)00038-2 CrossRefGoogle Scholar
  15. King, D.A., Peters, J.R., Daus, M.W.: Taxicabs for Improved Urban Mobility: Are We Missing an Opportunity? Paper presented at the 91st TRB Annual Meeting, Washington DC (2012)Google Scholar
  16. Lee, D.H., Wu, X., Sun, L.: A limited information sharing strategy for the taxi-customer searching problem in the non-booking taxi service. Transp. Res. Rec. 2333, 46–54 (2013). doi: 10.3141/2333-06 CrossRefGoogle Scholar
  17. New York City Taxi and Limousine Commission: 2014 Taxicab Fact Book. http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf. Accessed 20 June 2014
  18. Phithakkitnukoon, S., Veloso, M., Bento, C., Biderman, A., Ratti, C.: Taxi-aware map: identifying and predicting vacant taxis in the city. Ambient Intelligence, Lecture Notes in Computer Science, vol. 6439, pp. 86–95. doi:  10.1016/S1071-5819(03)00052-1
  19. Qian, X., Zhan, X., Ukkusuri, S.V.: Characterizing urban dynamics using large scale taxicab data. In: Lagaros, N.D., Papadrakakis, M. Engineering and Applied Sciences Optimization: Dedicated to the Memory of Professor M.G. Karlaftis, pp. 17–32. Springer, Heidelberg (2015)Google Scholar
  20. Schaller, B.: A regression model of the number of taxicabs in US cities. J. Public Transp. 8(5), 63–78 (2005). doi: 10.5038/2375-0901.8.5.4 CrossRefGoogle Scholar
  21. Sirisoma, R.M.N.T., Wong, S.C., Lam, W.H.K., Wang, D., Yang, H., Zhang, P.: Empirical evidence for taxi customer-search model. Transport 163(4), 203–210 (2010). doi: 10.1680/tran.2010.163.4.203 Google Scholar
  22. Stopher, P., FitzGerald, C., Zhang, J.: Search for a global positioning system device to measure person travel. Transp. Res. Part C 16(3), 350–369 (2008). doi: 10.1016/j.trc.2007.10.002 CrossRefGoogle Scholar
  23. Ukkusuri, S.V., Miranda-Moreno, L.F., Ramadurai, G., Isa-Tavarez, J.: The role of built environment on pedestrian crash frequency. Saf. Sci. 50(4), 1141–1151 (2012). doi: 10.1016/j.ssci.2011.09.012 CrossRefGoogle Scholar
  24. Washington, S.P., Karlaftis, M.G., Mannering, F.L.: Statistical and econometric methods for transportation data analysis. CRC Press, Washington, DC (2011)Google Scholar
  25. Wong, K.I., Wong, S.C., Yang, H.: Modeling urban taxi services in congested road networks with elastic demand. Transp. Res. Part B 35(9), 819–842 (2001). doi: 10.1016/S0191-2615(00)00021-7 CrossRefGoogle Scholar
  26. Wong, R.C.P., Szeto, W.Y., Wong, S.C.: Bi-level decisions of vacant taxi drivers traveling towards taxi stands in customer-search modeling methodology and policy implications. Transp. Policy 33, 73–81 (2014). doi: 10.1016/j.tranpol.2014.02.011 CrossRefGoogle Scholar
  27. Yan, S., Chen, C., Wu, C.: Solution methods for the taxi pooling problem. Transportation 39(3), 723–748 (2011). doi: 10.1007/s11116-011-9354-9 CrossRefGoogle Scholar
  28. Yang, H., Lau, Y.W., Wong, S.C., Lo, H.K.: A macroscopic taxi model for passenger demand, taxi utilization and level of services. Transportation 27(3), 317–340 (2000). doi: 10.1023/A:1005289504549 CrossRefGoogle Scholar
  29. Yang, H., Wong, S.C.: A network model of urban taxi services. Transp. Res. Part B 32(4), 235–246 (1998). doi: 10.1016/S0191-2615(97)00042-8 CrossRefGoogle Scholar
  30. Yang, H., Leung, C.W.Y., Wong, S.C., Bell, M.G.H.: Equilibria of bilateral taxi-customer searching and meeting on networks. Transp. Res. Part B 44(8–9), 1067–1083 (2010). doi: 10.1016/j.trb.2009.12.010 CrossRefGoogle Scholar
  31. Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-Finder: a recommender system for passengers and vacant taxis. IEEE Trans. Knowl. Data Eng. 25(10), 2390–2403 (2013). doi: 10.1109/TKDE.2012.153 CrossRefGoogle Scholar
  32. Zhan, X., Qian, X., Ukkusuri, S.V.: A graph based approach to measure the efficiency of urban taxi service system. IEEE Trans. Intell. Transp. Syst. (2016). doi: 10.1109/TITS.2016.2521862 Google Scholar
  33. Zhang, W., Ukkusuri, S.V.: Optimal fleet size and fare setting in emerging taxi markets with stochastic demand. Comput. Aided Civ. Infrastruct. Eng. (2016). doi: 10.1111/mice.12203 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Lyles School of Civil EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.School of TransportationTongji UniversityShanghaiChina

Personalised recommendations