, Volume 44, Issue 6, pp 1383–1402 | Cite as

A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin–destination demand networks

  • Meead Saberi
  • Hani S. Mahmassani
  • Dirk Brockmann
  • Amir Hosseini


Urban travel demand, consisting of thousands or millions of origin–destination trips, can be viewed as a large-scale weighted directed graph. The paper applies a complex network-motivated approach to understand and characterize urban travel demand patterns through analysis of statistical properties of origin–destination demand networks. We compare selected network characteristics of travel demand patterns in two cities, presenting a comparative network-theoretic analysis of Chicago and Melbourne. The proposed approach develops an interdisciplinary and quantitative framework to understand mobility characteristics in urban areas. The paper explores statistical properties of the complex weighted network of urban trips of the selected cities. We show that travel demand networks exhibit similar properties despite their differences in topography and urban structure. Results provide a quantitative characterization of the network structure of origin–destination demand in cities, suggesting that the underlying dynamical processes in travel demand networks are similar and evolved by the distribution of activities and interaction between places in cities.


Complext networks Network science Travel demand Melbourne Chicago 

Supplementary material

11116_2016_9706_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1593 kb)


  1. Axhausen, K., Garling, T.: Activity-based approaches to travel analysis: conceptual frameworks, models, and research problems. Transp. Rev. 12(4), 323–341 (1992)CrossRefGoogle Scholar
  2. Bazzani, A., Giorgini, B., Rambaldi, S., Gallotti, R., Giovannini, L.: Statistical laws in urban mobility from microscopic GPS data in the area of Florence. J. Stat. Mech. 2010, P05001 (2010)CrossRefGoogle Scholar
  3. Betty, M.: The new science of cities. MIT press, Cambridge (2013)Google Scholar
  4. Bowman, J.L., Ben-Akiva, M.E.: Activity-based disaggregate travel demand model system with activity schedules. Transp. Res. A 35, 1–28 (2001)CrossRefGoogle Scholar
  5. Brockmann, D.: Human mobility and spatial disease dynamics. Reviews of nonlinear dynamics and complexity, pp. 1–24. Wiley-VCH, Weinheim (2009)Google Scholar
  6. Brockmann, D.: Statistical mechanics: the physics of where to go. Nat. Phys. News Views 6, 720–721 (2010)Google Scholar
  7. Brockmann, D., Helbing, D.: The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337 (2013)CrossRefGoogle Scholar
  8. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)CrossRefGoogle Scholar
  9. Calabrese, F., Di Lorenzo, G., Liu, C.L., Ratti, C.: Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Comput. 10(4), 36–44 (2011)CrossRefGoogle Scholar
  10. Carrasco, J.A., Miller, E.J.: Exploring the propensity to perform social activities: a social network approach. Transportation 33(5), 463–480 (2006)CrossRefGoogle Scholar
  11. Chen, Y., Frei, A., Mahmassani, H. S.: Exploring activity and destination choice behavior in social networking data. Proceedings of the transportation research board 94th annual meeting (No. 15-5808), Washington (2015)Google Scholar
  12. Clauset, A., Shilazi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. Soc. Ind. Appl. Math. Rev. 51(4), 661–703 (2009)Google Scholar
  13. Colak, S., Schneider, C.M., Wang, P., González, M.C.: On the role of spatial dynamics and topology on network flows. New J. Phys. 15, 113037 (2013)CrossRefGoogle Scholar
  14. Çolak, S., Alexander, L.P., Alvim, B.G., Mehndiretta, S.R., González, M.C.: Analyzing cell phone location data for urban travel: current methods, limitations and opportunities. Trans. Res. Rec. 2526, 126–135 (2015)CrossRefGoogle Scholar
  15. Costa, Da F., Baggio, L.R.: The web connections between tourism companies: structure and dynamics. Physica A 388, 4286–4296 (2009)CrossRefGoogle Scholar
  16. Daganzo, C.: Urban gridlock: macroscopic modeling and mitigation approaches. Transp. Res. B 41(1), 49–62 (2007)CrossRefGoogle Scholar
  17. Downs, R.M., Stea, D.: Image and environments. In: Downs, R.M., Stea, D. (eds.) Cognitive maps and spatial behavior: process and products. Aldine, London (1973)Google Scholar
  18. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by using mobile phone data. Proc. Nat. Acad. Sci. USA 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  19. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationship of the internet topology. ACM SIGCOMM Comp. Commun. Rev. 29, 251–262 (1999)CrossRefGoogle Scholar
  20. Fan, Y., Khattak, A.: Urban form, individual spatial footprints, and travel: examination of space-use behavior. Transp. Res. Rec. 2082, 98–106 (2008)CrossRefGoogle Scholar
  21. Geroliminis, N., Daganzo, C.: Existence of urban-scale macroscopic fundamental diagrams: some experimental findings. Transp. Res. B 45(3), 605–617 (2008)CrossRefGoogle Scholar
  22. Golledge, R.G., Stimson, R.J.: Spatial behavior: a geographic perspective. Guilford, New York (1997)Google Scholar
  23. González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  24. Gould, P., White, R.: Mental maps. Pernguin Books, Harmondsworth (1974)CrossRefGoogle Scholar
  25. Hasan, S., Schneider, C.M., Ukkusuri, S.V., González, M.C.: Spatio-temporal patterns of urban human mobility. J. Stat. Phys. 151, 304–318 (2013)CrossRefGoogle Scholar
  26. Iqbal, M.S., Choudhury, C.F., Wang, P., González, M.C.: Development of origin–destination matrices using mobile phone call data. Trans. Res. 40, 63–74 (2014)Google Scholar
  27. Jiang, B., Yin, J., Zhao, S.: Characterizing the human mobility pattern in a large street network. Phys. Rev. 80, 1–11 (2009)Google Scholar
  28. Joubert, J.W., Axhausen, K.: A complex network approach to understand commercial vehicle movement. Transportation 40(3), 729–750 (2013)CrossRefGoogle Scholar
  29. Kamruzzaman, Md, Hine, J.: Analysis of rural activity spaces and transport disadvantage using a multi-method approach. Transp. Policy 19(1), 105–120 (2012)CrossRefGoogle Scholar
  30. Kang, C., Ma, X., Tong, D., Liu, Y.: Intra-urban human mobility patterns: an urban morphology perspective. Physica A 391, 1702–1717 (2012)CrossRefGoogle Scholar
  31. Keegan, B., Ahmed, M.A., Williams, D., Srivastava, J., Contractor, N.: Dark gold: statistical properties of clandestine networks in massively multiplayer online games. IEEE Second Int. Conf. Soc. Comput. (2010). doi: 10.1145/1925041.1925043 Google Scholar
  32. Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nat. Biotechnol. 23, 561–566 (2005)CrossRefGoogle Scholar
  33. Kim, J., Mahmassani, H.S.: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories. Trans. Res. C 59, 375–390 (2015)CrossRefGoogle Scholar
  34. Liang, X., Zheng, X., Lv, W., Zhu, T., Xu, K.: The scaling of human mobility by taxis is exponential. Physica A 391, 2135–2144 (2012)CrossRefGoogle Scholar
  35. Liang, X., Zhao, J., Dong, L., Xu, K.: Unraveling the origin of exponential law in intra-urban human mobility. Sci. Rep. 3, 2983 (2013)CrossRefGoogle Scholar
  36. Lynch, K.: The image of the city. MIT Press, Cambridge (1960)Google Scholar
  37. Mahmassani, H.: Dynamic network traffic assignment and simulation methodology for advanced system management applications. Net. Spat. Econ. 1(3–44), 267–292 (2001)CrossRefGoogle Scholar
  38. Mahmassani, H., Saberi, M., Zockaie, A.: Urban network gridlock: theory, characteristics, and dynamics. Trans. Res. C 36, 480–497 (2013)CrossRefGoogle Scholar
  39. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Nat. Acad. Sci. USA 98(2), 404–409 (2001)CrossRefGoogle Scholar
  40. Newman, M.: Networks: an introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  41. Newman, M., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68(3), 036122 (2003)CrossRefGoogle Scholar
  42. Nguyen, T., Szymanski, B.: Using location-based social networks to validate human mobility and relationships models. Proc. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal. Min. (2012). doi: 10.1109/ASONAM.2012.210 Google Scholar
  43. Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., Mascolo, C.: A tale of many cities: universal patterns in human urban mobility. Plos One 7(5), e37027 (2012). doi: 10.1371/journal.pone.0037027 CrossRefGoogle Scholar
  44. Pearson, D., Ellis, P., Farnsworth, S.: Calibration of a past year travel demand model for model evaluation. Texas Trans. Inst. (2002). doi: 10.1016/j.procs.2012.08.001. (Report No. FHWA/TX-03/4198-2) Google Scholar
  45. Pendalaya, R., Bhat, C.: Validation and assessment of activity-based travel demand model systems. Proc. Innov. Travel Demand Model. 2, 157–158 (2006)Google Scholar
  46. Peng, C., Jin, X., Wong, K.-C., Shi, M., Liò, P.: Collective human mobility pattern from taxi trips in urban area. Plos One 7, e34487 (2012)CrossRefGoogle Scholar
  47. Rai, R.K., Balmer, M., Rieser, M., Vaze, V.S., Schönfelder, S., Axhausen, K.W.: Capturing human activity spaces: new geometries. Trans. Res. Rec. 2021, 70–80 (2007)CrossRefGoogle Scholar
  48. Ratti, C., Frenchman, D., Pulselli, R.M., Williams, S.: Mobile landscapes: using location data from cell phones for urban analysis. Environ. Plan. 33, 727–748 (2006)CrossRefGoogle Scholar
  49. Riccardo, G., Armando, B., Sanro, R.: Towards a statistical physics of human mobility. Int. J. Mod. Phys. C 23(9), 1250061 (2012)CrossRefGoogle Scholar
  50. Roth, C., Kang, S.M., Batty, M., Barthélemy, M.: Structure of urban movements: polycentric activity and entangled hierarchical flows. Plos One 6, e15923 (2011)CrossRefGoogle Scholar
  51. Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., Vidal, M.: Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062), 1173–1178 (2005)CrossRefGoogle Scholar
  52. Saberi, M., Mahmassani, H., Hou, T., Zockaie, A.: Estimating network fundamental diagram using three-dimensional vehicle trajectories: extending Edie’s definitions of traffic flow variables to networks. Transp. Res. Rec. 2422, 12–20 (2014)CrossRefGoogle Scholar
  53. Schneider, C.M., Belik, V., Couronné, T., Smoreda, Z., González, M.C.: Unravelling daily human mobility motifs. J. R. Soc. Interface 10, 1–8 (2013)CrossRefGoogle Scholar
  54. Schonfelder, A., Axhausen, K.W.: Activity spaces: measures of social exclusion? Transp. Policy 10(4), 273–286 (2003)CrossRefGoogle Scholar
  55. Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the AS-level internet topology. IEEE/ACM Trans. Netw. 11(4), 514–524 (2003)CrossRefGoogle Scholar
  56. Simini, F., González, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484, 96–100 (2012)CrossRefGoogle Scholar
  57. Song, C., Koren, T., Wang, P., Barabási, A.: Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010)CrossRefGoogle Scholar
  58. Theriault, M., Claramunt, C., Seguin, A.M., Villeneuve, P.: Temporal GIS and statistical modelling of personal lifelines. Adv. Spat. Data Handl. (2002). doi: 10.1109/DEXA.1999.795202 Google Scholar
  59. Thiemann, C., Theis, F., Grady, D., Brune, R., Brockmann, D.: The structure of borders in a small world. Plos One 5(11), e15422 (2010)CrossRefGoogle Scholar
  60. Timmermans, H.J., Zhang, J.: Modeling household activity travel behavior: examples of state of the art modeling approaches and research agenda. Transp. Res. B 43(2), 187–190 (2009)CrossRefGoogle Scholar
  61. Toole, J.L., Colak, S., Sturt, B., Alexandre, L., Evsukoff, A., González, M.C.: The path most travelled: travel demand estimation using big data resources. Transp. Res. C (2015). doi: 10.1016/j.trc.2015.04.022 Google Scholar
  62. Virkar, Y., Clauset, A.: Power-law distributions in binned empirical data. Ann. Appl. Stat. 8(1), 89–119 (2014)CrossRefGoogle Scholar
  63. Wang, P., Hunter, T., Bayen, A., Schechtner, K., González, M.C.: Understanding road usage patterns in urban areas. Sci. Rep. (2012). doi: 10.1038/srep01001 Google Scholar
  64. Watling, D., Hazelton, M.L.: The dynamics and equilibria of day-to-day assignment models. Netw. Spat. Eco. 3(3), 349–370 (2003)CrossRefGoogle Scholar
  65. Watts, D.J.: The science of a connected age. Six degrees. W. W. Norton & Co. Inc., New York (2003)Google Scholar
  66. Widhalm, P., Yang, Y., Ulm, M., Athavale, S., González, M.C.: Discovering urban activity patterns in cell phone data. Transportation 42(4), 597–623 (2015)CrossRefGoogle Scholar
  67. Woolley-Meza, O., Thiemann, C., Grady, D., Lee, J.J., Seebens, H., Blasius, B., Brockmann, D.: Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo ship movements. Eur. Phys. J. B 84, 589–600 (2011)CrossRefGoogle Scholar
  68. Yagi, S., Mohammadian, A.: An activity-based microsimulation model of travel demand in the jakarta metropolitan area. J. Choice Model. 3(1), 32–57 (2010)CrossRefGoogle Scholar
  69. Ye, Q., Wu, B., Wang, B.: Distance distribution and average shortest path length estimation in real-world networks. Adv. Data Min. Appl. 6440, 322–333 (2010)CrossRefGoogle Scholar
  70. Yook, S.H., Jeong, H., Barabasi, A.L.: Modeling the internet’s large-scale topology. Proc. Nat. Acad. Sci. USA 99(22), 13382–13386 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Meead Saberi
    • 1
  • Hani S. Mahmassani
    • 2
  • Dirk Brockmann
    • 3
  • Amir Hosseini
    • 1
  1. 1.Department of Civil Engineering, Institute of Transport StudiesMonash UniversityMelbourneAustralia
  2. 2.Transportation CenterNorthwestern UniversityEvanstonUSA
  3. 3.Institute for Theoretical BiologyHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations