Transportation

, Volume 42, Issue 4, pp 647–668 | Cite as

Exploring the potential of phone call data to characterize the relationship between social network and travel behavior

  • Miguel Picornell
  • Tomás Ruiz
  • Maxime Lenormand
  • José J. Ramasco
  • Thibaut Dubernet
  • Enrique Frías-Martínez
Article

Abstract

Social network contacts have significant influence on individual travel behavior. However, transport models rarely consider social interaction. One of the reasons is the difficulty to properly model social influence based on the limited data available. Non-conventional, passively collected data sources, such as Twitter, Facebook or mobile phones, provide large amounts of data containing both social interaction and spatiotemporal information. The analysis of such data opens an opportunity to better understand the influence of social networks on travel behavior. The main objective of this paper is to examine the relationship between travel behavior and social networks using mobile phone data. A huge dataset containing billions of registers has been used for this study. The paper analyzes the nature of co-location events and frequent locations shared by social network contacts, aiming not only to provide understanding on why users share certain locations, but also to quantify the degree in which the different types of locations are shared. Locations have been classified as frequent (home, work and other) and non-frequent. A novel approach to identify co-location events based on the intersection of users’ mobility models has been proposed. Results show that other locations different from home and work are frequently associated to social interaction. Additionally, the importance of non-frequent locations in co-location events is shown. Finally, the potential application of the data analysis results to improve activity-based transport models and assess transport policies is discussed.

Keywords

Travel behavior Social network Mobile phone Call Detail Record Activity-based modelling 

References

  1. Ahas, R., Aasa, A., Silm, S., Tiru, M.: Daily rhythms of suburban commuters’ movements in the tallinn metropolitan area: case study with mobile positioning data. Transp. Res. Part C 18, 45–54 (2010)CrossRefGoogle Scholar
  2. Arentze, T.,Timmermans, H. J.: social networks, social interactions and activity-travel behavior: a framework for micro-simulation. Paper presented at the 85th annual meeting of the Transportation Research Board, Washington, D. C., Jan 2006 (2006)Google Scholar
  3. Arentze, T., Timmermans, H.: Social networks, social interactions, and activity-travel behavior: a framework for microsimulation. Environ. Plan. 35, 1012–1027 (2008)CrossRefGoogle Scholar
  4. Axhausen, K.W.: Social networks and travel: some hypotheses. In: Donaghy, K.P., Poppelreuter, S., Rudinger, G. (eds.) Social Aspects of Sustainable Transport: Transatlantic Perspectives, pp. 90–108. Ashgate, Aldershot (2005)Google Scholar
  5. Bagrow, J.P., Lin, Y.-R.: Mesoscopic structure and social aspects of human mobility. PLoS One 7(5), 1–11 (2012)CrossRefGoogle Scholar
  6. Bar-Gera, H.: Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from israel. Transp. Res. Part C 15(2007), 380–391 (2007)CrossRefGoogle Scholar
  7. Becker, R.A., Cáceres, R., Hanson, K., Loh, J.M., Urbanek, S., Varshavsky, A., Volinsky, C.: A tale of one city: using cellular network data for urban planning. Pervasive Comput. IEEE 10(4), 18–26 (2011)CrossRefGoogle Scholar
  8. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462 (2006)CrossRefGoogle Scholar
  9. Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin–destination data from a mobile phone network. IET Intell. Transp. Syst. 1(1), 5–26 (2007)CrossRefGoogle Scholar
  10. Caceres, N., Wideberg, J.P., Benitez, F.G.: Review of traffic data estimations extracted from cellular networks. IET Intell. Transp. Syst. 2(3), 179–192 (2008)CrossRefGoogle Scholar
  11. Caceres, N., Romero, L.M., Benitez, F.G., Castillo, J.M.D.: Traffic flow estimation models using cellular phone data. IEEE Trans. Intell. Transp. Syst. 13(3), 1430–1441 (2012)CrossRefGoogle Scholar
  12. Calabrese, F., Pereira, F. C., Lorenzo, G. D., Liu, L., Ratti, C.: The geography of taste: analyzing cell-phone mobility and social events. In: Proceedings of IEEE International Conference on Pervasive Computing (2010)Google Scholar
  13. Calabrese, F., Smoreda, Z., Blondel, V.D., Ratti, C.: Interplay between telecommunications and face-to-face interactions: a study using mobile phone data. PLoS One 6(7), e20814 (2011a). doi:10.1371/journal.pone.0020814 CrossRefGoogle Scholar
  14. Calabrese, F., Lorenzo, G.D., Liu, L., Ratti, C.: Estimating origin-destination flows using mobile phone location data. Pervasive Comput. IEEE 10(4), 36–44 (2011b)CrossRefGoogle Scholar
  15. Carrasco, J.A., Miller, E.J.: Exploring the propensity to perform social activities: social networks approach. Transportation 33, 463–480 (2006)CrossRefGoogle Scholar
  16. Carrasco, J.A., Hogan, B., Wellman, B., Miller, E.J.: Collecting social network data to study social activity-travel behaviour: an egocentric approach. Environ. Plan. B 35(6), 961–980 (2008a)CrossRefGoogle Scholar
  17. Carrasco, J.A., Hogan B., Wellman B., Miller E. J.: Agency in social activity and ICT interactions: The role of social networks in time and space, Tijdschrift voor Economische en Sociale Geografie (J. Eco. Soc. Geogr.), 99(5), 562–583 (2008b)Google Scholar
  18. Carrasco, J.A., Miller, E.J., Wellman, B.: How far and with whom do people socialize? Empirical evidence about the distance between social network members. Transp. Res. Rec. 2076, 114–122 (2008b)CrossRefGoogle Scholar
  19. Carrasco, J.A., Miller, E.J.: The social dimension in action: a multilevel, personal networks model of social activity frequency. Transp. Res. Part A 43(1), 90–104 (2009)Google Scholar
  20. Chen, C., Mei, Y.: Does distance still matter in facilitating social ties? The roles of mobility patterns and the built environment. Presented at 93rd TRB annual meeting (2014)Google Scholar
  21. Cho E., Myers S.A., Leskovek J.: Friendship and mobility: user movement in location-based social networks. In: KDD ‘11 Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1082–1090 (2011)Google Scholar
  22. Clifton, K.J.: The social context of travel behavior. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 441–448. Emerald Press, London (2013)Google Scholar
  23. Do T., Gatica-Perez D.: Contextual conditional models for smartphone-based human mobility prediction. In: Proceedings ACM International Conference on Ubiquitous Computing, Pittsburgh, Sept (2012)Google Scholar
  24. Doyle, J., Hung, P., Kelly, D., Mcloone, S., Farrell, R.: Utilising mobile phone billing records for travel mode discovery. ISSC 2011, Trinity College Dublin, June (2011)Google Scholar
  25. Dubernet, T., Axhausen K. W.: Solution concepts for the simulation of household-level joint descision making in multi-agent travel simulation tools, paper presented at the 14th Swiss Transport Research Conference (STRC), Ascona (2014)Google Scholar
  26. Dugundji, E., Walker, J.: Discrete choice with social and spatial network interdependencies: an empirical example using mixed GEV models with field and “panel” effects. Transp. Res. Rec. 1921, 70–78 (2005)CrossRefGoogle Scholar
  27. Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. (PNAS) 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  28. González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453(2008), 779–782 (2008)CrossRefGoogle Scholar
  29. Gould, J.: Cell phone enabled travel surveys: the medium moves the message. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 51–70. Emerald Press, Bingley (2013)Google Scholar
  30. Habib, K.N., Carrasco, J.A.: Investigating the role of social networks in start time and duration of activities: a trivariate simultaneous econometric model. Transportation Research Record: Journal of the Transportation Research Board 2230, 1–8 (2011)CrossRefGoogle Scholar
  31. Hackney, Jeremy K., Kay W. Axhausen: An agent model of social network and travel behavior interdependence. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)Google Scholar
  32. Hackney, J., Marchal, F.: A model for coupling multi-agent social interactions and traffic simulation, in: TRB 2009 annual meeting (2009)Google Scholar
  33. Hackney, J., Marchal, F.: A coupled multi-agent microsimulation of social interactions and transportation behavior. Transp. Res. Part A 45, 296–309 (2011)Google Scholar
  34. Horni, A.: Destination choice modeling of discretionary activities in transport microsimulations, Ph.D. Thesis, ETH Zurich, Zurich (2013)Google Scholar
  35. Isaacman, S.,Becker, R., Caceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Identifying important places in people’s lives from cellular network data. In: Procedings International Conference on Pervasive Computing, San Francisco, June (2011)Google Scholar
  36. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Commun. Mag. IEEE 48(9), 140–150 (2010)CrossRefGoogle Scholar
  37. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Computational Social Science. Science 323, 721 (2009)CrossRefGoogle Scholar
  38. Ma, H., Ronald, N., Arentze, T.A., Timmermans, H.J.P.: New credit mechanism for semicooperative agent-mediated joint activity-travel scheduling. Transp. Res. Rec. 2230, 104–110 (2011)CrossRefGoogle Scholar
  39. Ma, H., Arentze, T. A., Timmermans, H. J. P.: Incorporating selfishness and altruism into dynamic joint activity-travel scheduling. Paper presented at the 13th international conference on Travel Behaviour Research (IATBR), Toronto, July (2012)Google Scholar
  40. Marchal, F., Nagel, K.: Allowed cooperative agents in a microsimulation to share information with each other about activity locations and about other agents, in order to optimize trip chains (2006)Google Scholar
  41. Molin, E.J.E., Arentze, T.A., Timmermans, H.J.P.: Social activities and travel demands : a model-based analysis of social-network data. Transp. Res. Rec. 2082, 168–175 (2007)CrossRefGoogle Scholar
  42. Moore, J., Carrasco, J.A., Tudela, A.: Exploring the links between personal networks, time use, and the spatial distribution of social contacts. Transportation 40(4), 773–788 (2013)CrossRefGoogle Scholar
  43. Onnela, J.-P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 7332–7336 (2007)CrossRefGoogle Scholar
  44. Páez, A., Scott, D.M.: Social influence on travel behavior: a simulation example of the decision to telecommute. Environ. Plan. A 39(3), 647–665 (2007)CrossRefGoogle Scholar
  45. Phithakkitnukoon, S., Calabrese, F., Smoreda, Z., Ratti, C.: Out of sight out of mind: how our mobile social network changes during migration. Proceedings of the IEEE International Conference on Social Computing, pp. 515–520. Cambridge University Press, Cambridge (2011)Google Scholar
  46. Phithakkitnukoon, S., Smoreda, Z., Olivier, P.: Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS One 7(6), e39253 (2012). doi:10.1371/journal.pone.0039253 CrossRefGoogle Scholar
  47. Ronald, N.A., Arentze, T.A., Timmermans, H.J.P.: Modeling social interactions between individuals for joint activity scheduling. Transp. Res. Part B 46, 276–290 (2012a)CrossRefGoogle Scholar
  48. Ronald, N.A., Dignum, V., Jonker, C., Arentze, T.A., Timmermans, H.J.P.: On the engineering of agent-based simulations of social activities with social networks. Inf. Softw. Technol. 54(6), 625–638 (2012b)CrossRefGoogle Scholar
  49. Rose, G.: Mobile phones as traffic probes: practices, prospects and issues. Transp. Rev. 26(3), 275–291 (2006)CrossRefGoogle Scholar
  50. Sharmeen, F., Arentze, T., Timmermans, H.: A multilevel path analysis of social network dynamics and the mutual interdependencies between face-to-face and ICT modes of social interaction in the context of life-cycle events. In: Roorda, M.J., Miller, E.J. (eds.) Travel Behaviour Research: Current Foundations, Future Prospects, pp. 411–432. Lulu Press, Toronto (2013)Google Scholar
  51. Sharmeen, F., Arentze, T.A., Timmermans, H.J.P.: Dynamics of face-to-face social interaction frequency: role of accessibility, urbanization, changes in geographical distance and path dependence. J. Transp. Geogr. 34, 211–220 (2014)CrossRefGoogle Scholar
  52. Silm, S., Ahas, R.: The seasonal variability of population in estonian municipalities. Environ. Plan. A 42, 2527–2546 (2010)CrossRefGoogle Scholar
  53. Silvis, J., Niemeier, D., D’Souza, R.: Social networks and travel behavior: report from an integrated travel diary. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)Google Scholar
  54. Sobolevsky, S., Szell, M., Campari, R., Couronné, T., Smoreda, Z., et al.: Delineating geographical regions with networks of human interactions in an extensive set of countries. PLoS One 8(12), e81707 (2013)CrossRefGoogle Scholar
  55. Sohn, K., Kim, D.: Dynamic origin–destination flow estimation using cellular communication system. IEEE Trans. Veh. Technol. 57(5), 2703–2713 (2008)CrossRefGoogle Scholar
  56. Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(2010), 818–823 (2010a)CrossRefGoogle Scholar
  57. Song, C., Qu, Z., Blumm, N., Barabási, L.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010b)CrossRefGoogle Scholar
  58. Steenbruggen, J., Borzacchiello, M.T., Nijkamp, P., Scholten, H.: Mobile phone data from gsm networks for traffic parameter and urban spatial pattern assessment: A review of applications and opportunities. GeoJournal 78, 223–243 (2011). doi:10.1007/s10708-011-9413-y CrossRefGoogle Scholar
  59. Van den Berg, P., Arentze, T., Timmermans, H.J.P.: A path analysis of social networks, telecommunication and social activity–travel patterns. Transp. Res. Part C 26(2013), 256–268 (2013)CrossRefGoogle Scholar
  60. Wang, H., Calabrese, F., Lorenzo, G. D., Ratti, C.: Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: 13th international IEEE annual conference on intelligent transportation systems, 318–323 (2010)Google Scholar
  61. White, J. and Wells, I.: Extracting origin destination information from mobile phone data. Road transport information and Control, 19–21 Mar (2002)Google Scholar
  62. Yim, Y.: The state of cellular probes. California PATH Working Paper, UCB-ITS-PRR-2003-25 (2003)Google Scholar
  63. Ythier, J., Walker, J.L., Bierlaire, M.: The influence of social contacts and communication use on travel behavior: a smartphone-based study. In: Transportation Research Board annual meeting (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Miguel Picornell
    • 1
  • Tomás Ruiz
    • 2
  • Maxime Lenormand
    • 3
  • José J. Ramasco
    • 3
  • Thibaut Dubernet
    • 4
  • Enrique Frías-Martínez
    • 5
  1. 1.Nommon Solutions and TechnologiesMadridSpain
  2. 2.Universitat Politècnica de ValènciaValènciaSpain
  3. 3.Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB)Palma de MallorcaSpain
  4. 4.Institute for Transport Planning and Systems (IVT)ETH ZurichZurichSwitzerland
  5. 5.Telefonica ResearchMadridSpain

Personalised recommendations