Skip to main content
Log in

Exploring the potential of phone call data to characterize the relationship between social network and travel behavior

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Social network contacts have significant influence on individual travel behavior. However, transport models rarely consider social interaction. One of the reasons is the difficulty to properly model social influence based on the limited data available. Non-conventional, passively collected data sources, such as Twitter, Facebook or mobile phones, provide large amounts of data containing both social interaction and spatiotemporal information. The analysis of such data opens an opportunity to better understand the influence of social networks on travel behavior. The main objective of this paper is to examine the relationship between travel behavior and social networks using mobile phone data. A huge dataset containing billions of registers has been used for this study. The paper analyzes the nature of co-location events and frequent locations shared by social network contacts, aiming not only to provide understanding on why users share certain locations, but also to quantify the degree in which the different types of locations are shared. Locations have been classified as frequent (home, work and other) and non-frequent. A novel approach to identify co-location events based on the intersection of users’ mobility models has been proposed. Results show that other locations different from home and work are frequently associated to social interaction. Additionally, the importance of non-frequent locations in co-location events is shown. Finally, the potential application of the data analysis results to improve activity-based transport models and assess transport policies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahas, R., Aasa, A., Silm, S., Tiru, M.: Daily rhythms of suburban commuters’ movements in the tallinn metropolitan area: case study with mobile positioning data. Transp. Res. Part C 18, 45–54 (2010)

    Article  Google Scholar 

  • Arentze, T.,Timmermans, H. J.: social networks, social interactions and activity-travel behavior: a framework for micro-simulation. Paper presented at the 85th annual meeting of the Transportation Research Board, Washington, D. C., Jan 2006 (2006)

  • Arentze, T., Timmermans, H.: Social networks, social interactions, and activity-travel behavior: a framework for microsimulation. Environ. Plan. 35, 1012–1027 (2008)

    Article  Google Scholar 

  • Axhausen, K.W.: Social networks and travel: some hypotheses. In: Donaghy, K.P., Poppelreuter, S., Rudinger, G. (eds.) Social Aspects of Sustainable Transport: Transatlantic Perspectives, pp. 90–108. Ashgate, Aldershot (2005)

    Google Scholar 

  • Bagrow, J.P., Lin, Y.-R.: Mesoscopic structure and social aspects of human mobility. PLoS One 7(5), 1–11 (2012)

    Article  Google Scholar 

  • Bar-Gera, H.: Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from israel. Transp. Res. Part C 15(2007), 380–391 (2007)

    Article  Google Scholar 

  • Becker, R.A., Cáceres, R., Hanson, K., Loh, J.M., Urbanek, S., Varshavsky, A., Volinsky, C.: A tale of one city: using cellular network data for urban planning. Pervasive Comput. IEEE 10(4), 18–26 (2011)

    Article  Google Scholar 

  • Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462 (2006)

    Article  Google Scholar 

  • Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin–destination data from a mobile phone network. IET Intell. Transp. Syst. 1(1), 5–26 (2007)

    Article  Google Scholar 

  • Caceres, N., Wideberg, J.P., Benitez, F.G.: Review of traffic data estimations extracted from cellular networks. IET Intell. Transp. Syst. 2(3), 179–192 (2008)

    Article  Google Scholar 

  • Caceres, N., Romero, L.M., Benitez, F.G., Castillo, J.M.D.: Traffic flow estimation models using cellular phone data. IEEE Trans. Intell. Transp. Syst. 13(3), 1430–1441 (2012)

    Article  Google Scholar 

  • Calabrese, F., Pereira, F. C., Lorenzo, G. D., Liu, L., Ratti, C.: The geography of taste: analyzing cell-phone mobility and social events. In: Proceedings of IEEE International Conference on Pervasive Computing (2010)

  • Calabrese, F., Smoreda, Z., Blondel, V.D., Ratti, C.: Interplay between telecommunications and face-to-face interactions: a study using mobile phone data. PLoS One 6(7), e20814 (2011a). doi:10.1371/journal.pone.0020814

    Article  Google Scholar 

  • Calabrese, F., Lorenzo, G.D., Liu, L., Ratti, C.: Estimating origin-destination flows using mobile phone location data. Pervasive Comput. IEEE 10(4), 36–44 (2011b)

    Article  Google Scholar 

  • Carrasco, J.A., Miller, E.J.: Exploring the propensity to perform social activities: social networks approach. Transportation 33, 463–480 (2006)

    Article  Google Scholar 

  • Carrasco, J.A., Hogan, B., Wellman, B., Miller, E.J.: Collecting social network data to study social activity-travel behaviour: an egocentric approach. Environ. Plan. B 35(6), 961–980 (2008a)

    Article  Google Scholar 

  • Carrasco, J.A., Hogan B., Wellman B., Miller E. J.: Agency in social activity and ICT interactions: The role of social networks in time and space, Tijdschrift voor Economische en Sociale Geografie (J. Eco. Soc. Geogr.), 99(5), 562–583 (2008b)

  • Carrasco, J.A., Miller, E.J., Wellman, B.: How far and with whom do people socialize? Empirical evidence about the distance between social network members. Transp. Res. Rec. 2076, 114–122 (2008b)

    Article  Google Scholar 

  • Carrasco, J.A., Miller, E.J.: The social dimension in action: a multilevel, personal networks model of social activity frequency. Transp. Res. Part A 43(1), 90–104 (2009)

    Google Scholar 

  • Chen, C., Mei, Y.: Does distance still matter in facilitating social ties? The roles of mobility patterns and the built environment. Presented at 93rd TRB annual meeting (2014)

  • Cho E., Myers S.A., Leskovek J.: Friendship and mobility: user movement in location-based social networks. In: KDD ‘11 Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1082–1090 (2011)

  • Clifton, K.J.: The social context of travel behavior. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 441–448. Emerald Press, London (2013)

    Google Scholar 

  • Do T., Gatica-Perez D.: Contextual conditional models for smartphone-based human mobility prediction. In: Proceedings ACM International Conference on Ubiquitous Computing, Pittsburgh, Sept (2012)

  • Doyle, J., Hung, P., Kelly, D., Mcloone, S., Farrell, R.: Utilising mobile phone billing records for travel mode discovery. ISSC 2011, Trinity College Dublin, June (2011)

  • Dubernet, T., Axhausen K. W.: Solution concepts for the simulation of household-level joint descision making in multi-agent travel simulation tools, paper presented at the 14th Swiss Transport Research Conference (STRC), Ascona (2014)

  • Dugundji, E., Walker, J.: Discrete choice with social and spatial network interdependencies: an empirical example using mixed GEV models with field and “panel” effects. Transp. Res. Rec. 1921, 70–78 (2005)

    Article  Google Scholar 

  • Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. (PNAS) 106(36), 15274–15278 (2009)

    Article  Google Scholar 

  • González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453(2008), 779–782 (2008)

    Article  Google Scholar 

  • Gould, J.: Cell phone enabled travel surveys: the medium moves the message. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 51–70. Emerald Press, Bingley (2013)

    Google Scholar 

  • Habib, K.N., Carrasco, J.A.: Investigating the role of social networks in start time and duration of activities: a trivariate simultaneous econometric model. Transportation Research Record: Journal of the Transportation Research Board 2230, 1–8 (2011)

    Article  Google Scholar 

  • Hackney, Jeremy K., Kay W. Axhausen: An agent model of social network and travel behavior interdependence. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)

  • Hackney, J., Marchal, F.: A model for coupling multi-agent social interactions and traffic simulation, in: TRB 2009 annual meeting (2009)

  • Hackney, J., Marchal, F.: A coupled multi-agent microsimulation of social interactions and transportation behavior. Transp. Res. Part A 45, 296–309 (2011)

    Google Scholar 

  • Horni, A.: Destination choice modeling of discretionary activities in transport microsimulations, Ph.D. Thesis, ETH Zurich, Zurich (2013)

  • Isaacman, S.,Becker, R., Caceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Identifying important places in people’s lives from cellular network data. In: Procedings International Conference on Pervasive Computing, San Francisco, June (2011)

  • Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Commun. Mag. IEEE 48(9), 140–150 (2010)

    Article  Google Scholar 

  • Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Computational Social Science. Science 323, 721 (2009)

    Article  Google Scholar 

  • Ma, H., Ronald, N., Arentze, T.A., Timmermans, H.J.P.: New credit mechanism for semicooperative agent-mediated joint activity-travel scheduling. Transp. Res. Rec. 2230, 104–110 (2011)

    Article  Google Scholar 

  • Ma, H., Arentze, T. A., Timmermans, H. J. P.: Incorporating selfishness and altruism into dynamic joint activity-travel scheduling. Paper presented at the 13th international conference on Travel Behaviour Research (IATBR), Toronto, July (2012)

  • Marchal, F., Nagel, K.: Allowed cooperative agents in a microsimulation to share information with each other about activity locations and about other agents, in order to optimize trip chains (2006)

  • Molin, E.J.E., Arentze, T.A., Timmermans, H.J.P.: Social activities and travel demands : a model-based analysis of social-network data. Transp. Res. Rec. 2082, 168–175 (2007)

    Article  Google Scholar 

  • Moore, J., Carrasco, J.A., Tudela, A.: Exploring the links between personal networks, time use, and the spatial distribution of social contacts. Transportation 40(4), 773–788 (2013)

    Article  Google Scholar 

  • Onnela, J.-P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 7332–7336 (2007)

    Article  Google Scholar 

  • Páez, A., Scott, D.M.: Social influence on travel behavior: a simulation example of the decision to telecommute. Environ. Plan. A 39(3), 647–665 (2007)

    Article  Google Scholar 

  • Phithakkitnukoon, S., Calabrese, F., Smoreda, Z., Ratti, C.: Out of sight out of mind: how our mobile social network changes during migration. Proceedings of the IEEE International Conference on Social Computing, pp. 515–520. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  • Phithakkitnukoon, S., Smoreda, Z., Olivier, P.: Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS One 7(6), e39253 (2012). doi:10.1371/journal.pone.0039253

    Article  Google Scholar 

  • Ronald, N.A., Arentze, T.A., Timmermans, H.J.P.: Modeling social interactions between individuals for joint activity scheduling. Transp. Res. Part B 46, 276–290 (2012a)

    Article  Google Scholar 

  • Ronald, N.A., Dignum, V., Jonker, C., Arentze, T.A., Timmermans, H.J.P.: On the engineering of agent-based simulations of social activities with social networks. Inf. Softw. Technol. 54(6), 625–638 (2012b)

    Article  Google Scholar 

  • Rose, G.: Mobile phones as traffic probes: practices, prospects and issues. Transp. Rev. 26(3), 275–291 (2006)

    Article  Google Scholar 

  • Sharmeen, F., Arentze, T., Timmermans, H.: A multilevel path analysis of social network dynamics and the mutual interdependencies between face-to-face and ICT modes of social interaction in the context of life-cycle events. In: Roorda, M.J., Miller, E.J. (eds.) Travel Behaviour Research: Current Foundations, Future Prospects, pp. 411–432. Lulu Press, Toronto (2013)

    Google Scholar 

  • Sharmeen, F., Arentze, T.A., Timmermans, H.J.P.: Dynamics of face-to-face social interaction frequency: role of accessibility, urbanization, changes in geographical distance and path dependence. J. Transp. Geogr. 34, 211–220 (2014)

    Article  Google Scholar 

  • Silm, S., Ahas, R.: The seasonal variability of population in estonian municipalities. Environ. Plan. A 42, 2527–2546 (2010)

    Article  Google Scholar 

  • Silvis, J., Niemeier, D., D’Souza, R.: Social networks and travel behavior: report from an integrated travel diary. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)

  • Sobolevsky, S., Szell, M., Campari, R., Couronné, T., Smoreda, Z., et al.: Delineating geographical regions with networks of human interactions in an extensive set of countries. PLoS One 8(12), e81707 (2013)

    Article  Google Scholar 

  • Sohn, K., Kim, D.: Dynamic origin–destination flow estimation using cellular communication system. IEEE Trans. Veh. Technol. 57(5), 2703–2713 (2008)

    Article  Google Scholar 

  • Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(2010), 818–823 (2010a)

    Article  Google Scholar 

  • Song, C., Qu, Z., Blumm, N., Barabási, L.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010b)

    Article  Google Scholar 

  • Steenbruggen, J., Borzacchiello, M.T., Nijkamp, P., Scholten, H.: Mobile phone data from gsm networks for traffic parameter and urban spatial pattern assessment: A review of applications and opportunities. GeoJournal 78, 223–243 (2011). doi:10.1007/s10708-011-9413-y

    Article  Google Scholar 

  • Van den Berg, P., Arentze, T., Timmermans, H.J.P.: A path analysis of social networks, telecommunication and social activity–travel patterns. Transp. Res. Part C 26(2013), 256–268 (2013)

    Article  Google Scholar 

  • Wang, H., Calabrese, F., Lorenzo, G. D., Ratti, C.: Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: 13th international IEEE annual conference on intelligent transportation systems, 318–323 (2010)

  • White, J. and Wells, I.: Extracting origin destination information from mobile phone data. Road transport information and Control, 19–21 Mar (2002)

  • Yim, Y.: The state of cellular probes. California PATH Working Paper, UCB-ITS-PRR-2003-25 (2003)

  • Ythier, J., Walker, J.L., Bierlaire, M.: The influence of social contacts and communication use on travel behavior: a smartphone-based study. In: Transportation Research Board annual meeting (2013)

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007–2013 under grant agreement n° 318367 (EUNOIA project) and n° 611307 (INSIGHT project). The work of ML has been funded under the PD/004/2013 project, from the Conselleria de Educación, Cultura y Universidades of the Government of the Balearic Islands and from the European Social Fund through the Balearic Islands ESF operational program for 2013–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Picornell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picornell, M., Ruiz, T., Lenormand, M. et al. Exploring the potential of phone call data to characterize the relationship between social network and travel behavior. Transportation 42, 647–668 (2015). https://doi.org/10.1007/s11116-015-9594-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-015-9594-1

Keywords

Navigation