Skip to main content
Log in

Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

A three-stage approach, i.e., factor-cluster-multi-group Structural Equation Modeling (SEM), is designed to explore the commonalities and diversities with respect to relationships between socio-demographic characteristics and time-use patterns across different segments. Factor-cluster analysis is conducted to extract meaningful factors from attitudinal statements, and then group the sample population into three segments, each with a unique combination of mode preferences for public transit, private car, and motorcycle. By virtue of multi-group SEM, the relationships between socio-demographics and time allocated to activities and travel are found to be significantly different across segments. This study highlights the importance of latent psychological factors in segmentation. For policy implication, specific population with unique psychological features must be targeted in order to efficiently and effectively design and implement transport measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)

    Article  Google Scholar 

  • Ajzen, I., Cote, N.G.: Attitudes and the prediction of behavior. Attitudes Attitude Chang. 289–311 (2008)

  • Anable, J.: ‘Complacent car addicts’ or ‘aspiring environmentalists’? Identifying travel behaviour segments using attitude theory. Transp. Policy 12(1), 65–78 (2005)

    Article  Google Scholar 

  • Anable, J., Gatersleben, B.: All work and no play? The role of instrumental and affective factors in work and leisure journeys by different travel modes. Transp. Res. Part A: Policy Pract. 39(2), 163–181 (2005)

    Google Scholar 

  • Bamberg, S., Fujii, S., Friman, M., Gärling, T.: Behaviour theory and soft transport policy measures. Transp. Policy 18(1), 228–235 (2011)

    Article  Google Scholar 

  • Bamberg, S., Schmidt, P.: Theory-driven subgroup-specific evaluation of an intervention to reduce private car use1. J. Appl. Soc. Psychol. 31(6), 1300–1329 (2001)

    Article  Google Scholar 

  • Bohte, W., Maat, K., van Wee, B.: Measuring attitudes in research on residential self-selection and travel behaviour: a review of theories and empirical research. Transp. Rev. 29(3), 325–357 (2009)

    Article  Google Scholar 

  • Bollen Kenneth, A.: Structural Equations with Latent Variables. Wiley, New York (1989)

  • Churchill Gilbert A.: Marketing Research: Methodological Foundations, 7th edn. The Dryden Press, New York (1999)

  • Fishbein, M., Ajzen, I.: Belief, attitude, intention and behavior: An introduction to theory and research. Addison-Wesley, Reading, MA (1975)

  • Fujii, S., Gärling, T.: Application of attitude theory for improved predictive accuracy of stated preference methods in travel demand analysis. Transp. Res. Part A: Policy Pract. 37(4), 389–402 (2003)

    Google Scholar 

  • Fujii, S., Kitamura, R.: Evaluation of trip-inducing effects of new freeways using a structural equations model system of commuters’ time use and travel. Transp. Res. Part B: Methodol. 34(5), 339–354 (2000)

    Article  Google Scholar 

  • Gehlert, T., Dziekan, K., Gärling, T.: Psychology of sustainable travel behavior. Transp. Res. Part A 48(Complete), 19–24 (2013)

    Google Scholar 

  • Golob T.F.: A model of household demand for activity participation and mobility. In: Gärling, T., Laitilla, T., Westin, K. (eds.) Theoretical Foundations of Travel Choice Modelling, pp. 365–398. Pergamon, Oxford (1996)

  • Golob, T.F.: A simultaneous model of household activity participation and trip chain generation. Transp. Res. Part B: Methodol. 34(5), 355–376 (2000)

    Article  Google Scholar 

  • Golob, T.F.: Structural equation modeling for travel behavior research. Transp. Res. Part B: Methodol. 37(1), 1–25 (2003)

    Article  Google Scholar 

  • Golob, T.F., Kitamura, R., Lula, C.: Modeling the effects of commuting time on activity duration and non-work travel. In: 73rd Annual Meeting of the Transportation Research Board, Washington, DC, 1994

  • Golob, T.F., McNally, M.G.: A model of activity participation and travel interactions between household heads. Transp. Res. Part B: Methodol. 31(3), 177–194 (1997)

    Article  Google Scholar 

  • Gorsuch, R.: Factor Analysis. LEA, Hillsdale (1983)

    Google Scholar 

  • Gould, J., Golob, T.F.: Shopping without travel or travel without shopping? An investigation of electronic home shopping. Transp. Rev. 17(4), 355–376 (1997)

    Article  Google Scholar 

  • Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C.: Multivariate Analysis. Prentice Hall International, Englewood (1998)

    Google Scholar 

  • Hair, J.F., Tatham, R.L., Anderson, R.E., Black, W.: Multivariate data analysis, vol. 6. Pearson Prentice Hall, Upper Saddle River (2006)

    Google Scholar 

  • Heath, Y., Gifford, R.: Extending the theory of planned behavior: predicting the use of public transportation1. J. Appl. Soc. Psychol. 32(10), 2154–2189 (2002)

    Article  Google Scholar 

  • Hunecke, M., Haustein, S., Böhler, S., Grischkat, S.: Attitude-based target groups to reduce the ecological impact of daily mobility behavior. Environ. Behav. 42(1), 3–43 (2010)

    Article  Google Scholar 

  • Hunecke, M., Haustein, S., Grischkat, S., Böhler, S.: Psychological, sociodemographic, and infrastructural factors as determinants of ecological impact caused by mobility behavior. J. Environ. Psychol. 27(4), 277–292 (2007)

    Article  Google Scholar 

  • Kamakura, W.A., Wedel, M.: Market Segmentation: Conceptual and Methodological Foundations. Kluwer Academic Press, New York (1999)

    Google Scholar 

  • Kitamura, R.: An evaluation of activity-based travel analysis. Transportation 15(1–2), 9–34 (1988)

    Google Scholar 

  • Kitamura, R., Robinson, J., Golob, T.F., Bradley, M., Leonard, J., van der Hoorn, T.: A comparative analysis of time use data in the Netherlands and California, Research Report Number: UCDITS-RR-92–9, Institute of Transportation Studies, University of California, Davis, June (1992)

  • Kuhnimhof, T., Chlond, B., von der Ruhren, S.: Users of transport modes and multimodal travel behavior steps toward understanding travelers’ options and choices. Transp. Res. Rec.: J. Transp. Res. Board 1985(1), 40–48 (2006)

    Article  Google Scholar 

  • Kuppam, A.R., Pendyala, R.M.: A structural equations analysis of commuters’ activity and travel patterns. Transportation 28(1), 33–54 (2001)

    Article  Google Scholar 

  • Lanzendorf, M.: Mobility styles and travel behavior: application of a lifestyle approach to leisure travel. Transp. Res. Rec.: J. Transp. Res. Board 1807(1), 163–173 (2002)

    Article  Google Scholar 

  • Lu, X., Pas, E.I.: Socio-demographics, activity participation and travel behavior. Transp. Res. Part A: Policy Pract. 33(1), 1–18 (1999)

    Article  Google Scholar 

  • Ma, J., Goulias, K.G.: Application of Poisson regression models to activity frequency analysis and prediction. Transp. Res. Rec.: J. Transp. Res. Board 1676(1), 86–94 (1999)

    Article  Google Scholar 

  • Ohnmacht, T., Götz, K., Schad, H.: Leisure mobility styles in Swiss conurbations: construction and empirical analysis. Transportation 36(2), 243–265 (2009)

    Article  Google Scholar 

  • Pendyala, R., Kitamura, R., Prasuna Reddy, D.: Application of an activity-based travel-demand model incorporating a rule-based algorithm. Environ. Plan. B 25, 753–772 (1998)

    Article  Google Scholar 

  • Pronello, C., Camusso, C.: Travellers’ profiles definition using statistical multivariate analysis of attitudinal variables. J. Transp. Geogr. 19(6), 1294–1308 (2011)

    Article  Google Scholar 

  • Schwartz, S.H.: Normative influences on altruism. Adv. Exp. Soc. Psychol. 10, 221–279 (1977)

    Article  Google Scholar 

  • Shen, J.: Latent class model or mixed logit model? A comparison by transport mode choice data. Appl. Econ. 41(22), 2915–2924 (2009)

    Article  Google Scholar 

  • Spears, S., Houston, D., Boarnet, M.G.: Illuminating the unseen in transit use: a framework for examining the effect of attitudes and perceptions on travel behavior. Transp. Res. Part A: Policy Pract. 58, 40–53 (2013)

    Google Scholar 

  • Sung, H.H.: Classification of adventure travelers: behavior, decision making, and target markets. J. Travel Res. 42(4), 343–356 (2004)

    Article  Google Scholar 

  • Vermunt, J.K., Magidson, J.: Latent class cluster analysis. In: Hagenaars, J.A, McCutcheon, A.L. (eds.) Advances in Latent Class Analysis. Cambridge University Press (2002)

  • Vermunt, J.K., Magidson, J.: Latent class models for classification. Comput. Stat. Data Anal. 41(3), 531–537 (2003)

    Article  Google Scholar 

  • Wedel, M., Kamakura, W.: Market Segmentation. Conceptual and Methodological Foundation. Kluwer Academic Publisher, Boston–Dordrecht–London (1998)

    Google Scholar 

Download references

Acknowledgments

This research is sponsored by the National Natural Science Foundation of China (No. 51278301) and the Shanghai Foundation of Soft Science for Development of Science and Technology, China (No. 13692107700). The authors would like to express their appreciation to anyone who has provided suggestions and comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Juan, Z. Empirical analysis and comparisons about time-allocation patterns across segments based on mode-specific preferences. Transportation 43, 37–51 (2016). https://doi.org/10.1007/s11116-014-9561-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-014-9561-2

Keywords

Navigation