Abstract
We study whether taxi companies can simultaneously save petroleum and money by transitioning to electric vehicles. We propose a process to compute the return on investment of transitioning a taxi corporation’s fleet to electric vehicles. We use Bayesian data analysis to infer the revenue changes associated with the transition. We do not make any assumptions about the vehicles’ mobility patterns; instead, we use a timeseries of GPS coordinates of the company’s existing petroleumbased vehicles to derive our conclusions. As a case study, we apply our process to a major taxi corporation, Yellow Cab San Francisco (YCSF). Using current prices, we find that transitioning their fleet to battery electric vehicles and plugin hybrid electric vehicles is profitable for the company. Furthermore, given that gasoline prices in San Francisco are only 5.4 % higher than the rest of the United States, but electricity prices are 75 % higher; taxi companies with similar practices and mobility patterns in other cities are likely to profit more than YCSF by transitioning to electric vehicles.
This is a preview of subscription content, log in to check access.
Notes
 1.
*This equation only applies when studying BEVs with switching stations. The different scenarios we study are given in Case study EV scenarios
References
Aecom: Economic Viability of Electric Vehicles. Aecom Report (2009)
Bay City News: SFMTA Approves Controversial Taxi Medallion Plan. http://sanfrancisco.cbslocal.com/2011/09/02/111118/. Accessed 20 Oct 2012
Becker, T.A., Sidhu, I., Tenderich, B.: Electric Vehicles in the United States: A New Model with Forecasts to 2030. Center for Entrepreneurship & Technology (2009)
Berman, O., Larson, R., Fouska, N.: Optimal Location of Discretionary Service Facilities. Operations Research pp 1–36 (1990)
Berman, O., Larson, R., Fouska, N.: Optimal location of discretionary service facilities. Transp. Sci. 26:1–11 (1992)
Better Place: Better Place to Bring Electric Taxi Program to the San Francisco Bay Area. http://www.betterplace.com/thecompanypressroompressreleasesdetail/index/id/betterplacetobringelectrictaxiprogramtothesanfranciscobayarea (2010). Accessed 27 April 2011
Bloomfield, N.G.: Better Place Unveils Europe’s First Battery Switch Station in Denmark. http://www.greencarreports.com/news/1072111_betterplacedeliverselectriccarsbatteryswapsbecomereal (2012). Accessed 20 Oct 2012
Boulanger, A.G., Chu, A.C., Maxx, S., Waltz, D.L.: Vehicle electrification: status and issues. Proc. IEEE 99(6):1–23 (2011)
Canizares, et al.: Towards an Ontario Action Plan For PlugIn Electric Vehicles (2010)
CBS San Francisco: San Francisco Taxi Fares Go Up. http://sanfrancisco.cbslocal.com/2011/09/02/111118/ (2011). Accessed 20 Oct 2012
Chevrolet: Chevrolet Volt Specifications. http://gmvolt.com/fullspecifications/ (2011). Accessed 5 July 2011
Cornell University Law School.: US Code, Title 26,30. New Qualified Plug In Electric Drive Motor Vehicle Credit. http://www.nissanusa.com/ev/media/pdf/incentives/nissanleafincentivefederal2.pdf (2010). Accessed 5 July 2011.
Crawdad: GPS Mobility Data Set.http://crawdad.cs.dartmouth.edu/meta.php?name=epfl/mobility (2009). Accessed Oct 2010
Darovsky, et al.: Electric avenue: two case studies on the economic feasibility of the electrification of transportation. Master’s thesis, Duke University (2010)
Delucchi, M.A., Lipman, T.E.: An analysis of the retail and lifecycle cost of batterypowered electric vehicles. Transportation Research Part D (2001)
Drezner, Z., Hamacher, H.: Facility Location. Applications and Theory. Springer, Berlin (2002)
Elgowainy, A., Burnham, A., Wang, M., Molburg, J., Rousseau, A.: Welltowheels energy use and greenhouse gas emissions analysis of plugin hybrid electric vehicles. Center for Transportation Research, Energy Systems Division. ANL/ESD/092 (2009)
EPRI.: Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options. EPRI Report (2001)
Farrington, R., Rugh, J.: Impact of Vehicle Air Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range. Earth Technologies Forum, National Renewable Energy Laboratory (2000)
Galbraith, K.: Better Place Unveils Battery Swap Station. http://green.blogs.nytimes.com/2009/05/13/betterplaceunveilsbatteryswapstation/ (2009). Accessed 25 April 2011
Gao, H.O., Kitirattragarn, V.: Taxi owners’ buying preferences of hybridelectric vehicles and their implications for emissions in New York city. Transp. Res. Part A: Policy Pract. 42(8):1064–1073 (2008)
García, I., Miguel, L.J.: Is the electric vehicle an attractive option for customers?. Energies 5(1):71–91 (2012)
GasBuddy: San Francisco Gas Prices. http://www.sanfrangasprices.com/ (2011a). Accessed 12 May 2011
GasBuddy: Toronto Gas Prices. http://www.torontogasprices.com/ (2011b). Accessed 12 May 2011
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)
Hensley, R., Knupfer, S.,, Pinner, D.: McKinsey Quarterly: Electrifying Cars: How Three Industries Will Evolve. http://www.mckinseyquarterly.com/Electrifying_cars_How_three_industries_will_evolve_2370 (2009). Accessed 17 July 2011
Hensley, R., Knupfer, S.,, Pinner, D.: Green Tech Media: EV Batteries Plummet in Price: Down to $400 a kWh. http://www.greentechmedia.com/articles/read/evbatteriesdroppingrapidlyinprice/ (2010). Accessed 17 July 2011.
Kamat, H.: California Air Resources Board: Lithium Ion Batteries for Electric Transportation: Costs and Markets. http://www.arb.ca.gov/msprog/zevprog/2009symposium/presentations/kamath.pdf (2009). Accessed 17 July 2011
Kempton, W., Tomic, J.: Vehicletogrid power implication: from stabilizing the grid to supporting largescale renewable energy. J. Power Sour. 144(1):280–294 (2005)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598):671–680 (1983)
Kleinrock, L.: Theory, Volume 1, Queueing Systems. Wiley, New York (1975)
Kliesch, J., Langer, T.: PlugIn Hybrids an Enviornmental and Economic Performance Outlook. American Council for an EnergyEfficient Economy Report (2006)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms 3rd edn. Springer, Berlin (2006)
Kuby, M., Lim, S.: The flowrefueling location problem for alternativefuel vehicles. SocioEconomic Plan. Sci. 39(2):125–145 (2005)
Kuby, M., Lim, S.: Location of alternativefuel stations using the flowrefueling location model and dispersion of candidate sites on arcs. Netw. Spatial Econ. 7(2):129–152 (2006)
Kuby, M., Lines, L., Schultz, R., Xie, Z., Kim, J.G., Lim, S.: Optimization of hydrogen stations in Florida using the flowrefueling location model. Int. J. Hydrogen Energy 34(15):6045–6064 (2009)
Kanellos, M.: Green Tech Media: EV Batteries Plummet in Price: Down to $400 a kwH. http://www.greentechmedia.com/articles/read/evbatteriesdroppingrapidlyinprice/ (2010). Accessed 4 July 2011
National Research Council: Transitions to Alternative Transportation Technologies: Plugin Hybrid Electric Vehicles. The National Academies Press, Washington (2010)
Nissan: Nissan Leaf Pricing Information for California. http://www.nissanusa.com/leafelectriccar/incentives/show/California#/leafelectriccar/feature/pricing_information (2011a). Accessed 5 July 2011
Nissan: The Nissan Leaf. http://www.nissanusa.com/leafelectriccar/faq/list/charging#/leafelectriccar/faq/list/charging (2011b). Accessed 28 June 2011
Owen, S.H., Daskin, M.S.: Strategic facility location: a review. Eur. J. Oper. Res. 111(3):423–447 (1998)
Prud’homme, R.: Electric Vehicles: A Tentative Economic and Environmental Evaluation. International Transport Forum (2010)
Reuters: GM Sets $41,000 Price for Electric Chevy Volt. http://ca.reuters.com/article/domesticNews/idCATRE66Q4UO20100727 (2010). Accessed 4 Mar 2011
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (2003)
Samaras, C., Meisterling, K.: Life cycle assessment of greenhouse gas emissions from plugin hybrid vehicles: Implications for policy. Environ. Sci. Technol. 42(9):3170–3176 (2008)
Schaller Consulting: The New York City Taxi Fact Book. http://www.schallerconsult.com/taxi/taxifb.pdf (2006). Accessed 4 July 2011
Scientific American: Electric Cars: How Much Does it Cost per Charge?. http://www.scientificamerican.com/article.cfm?id=electriccarscostpercharg (2009). Accessed 27 April 2011.
Shidore, N., Bohn, T.: Evaluation of Cold Temperature Performance of the JCSVL41M PHEV Battery Using Battery HIL. Argonne National Laboratory, USA. http://www.autonomie.net/docs/6%20%20Papers/CIL/evaluation_of_cold_temperature.pdf (2008)
Shukla, A., Pekny, J., Venkatasubramanian, V.: An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Comput. Chem. Eng. 35(8):1–8 (2011)
Simpson, A.: Costbenefit analysis of plugin hybrid electric vehicle technology. 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (2006)
Snyder, L.V.: Facility location under uncertainty: a review. IIE Trans. 38:547–564 (2004)
The Automobile Association: UK and Overseas Fuel Prices.http://www.theaa.com/motoring_advice/fuel/ (2011). Accessed 1 Aug 2011.
The Exploratorium: Cabspotting. http://cabspotting.org/ (2008). Accessed 12 Feb 2011.
Tom, G., Kurt, P.: California’s Residential Electricity Consumption, Prices, and Bills 1980–2005, California Energy Commission Staff. http://www.energy.ca.gov/2007publications/CEC2002007018/CEC2002007018.PDF (2007). Accessed 5 July 2011
Tzeng, G.H., Lin, C.W., Opricovic, S.: Multicriteria analysis of alternativefuel buses for public transportation. Energy Policy 33(11):1373–1383 (2005)
US Department of Labor: Average energy prices in the San Francisco Area. http://www.bls.gov/ro9/cpisanf_energy.pdf (2010). Accessed 1 July 2011
Upchurch, C., Kuby, M., Lim, S.: A model for location of capacitated alternativefuel stations. Geogr Anal 41:1–22 (2009)
US Bureau of Labor Statistics: Average Energy Prices In The San Francisco Area: May 2011. http://www.bls.gov/ro9/cpisanf_energy.htm (2011a). Accessed 14 July 2011
US Bureau of Labor Statistics: San Francisco Electricity Prices. http://www.bls.gov/ro9/cpisanf_energy.htm (2011b). Accessed 8 June 2011
Wirasingha, S., Schofield, N., Emadi, A.: Feasibility analysis of converting a chicago transit authority (cta) transit bus to a plugin hybrid electric vehicle. In: Vehicle Power and Propulsion Conference, 2008. VPPC ’08. IEEE, pp. 1 –7 (2008)
Yarow, J.: The Cost of a Better Place Battery Swapping Station: $500,000. http://www.businessinsider.com/thecostofabetterplacebatteryswappingstation50000020094 (2009). Accessed 11 Jan 2011
Yellow Cab San Francisco: Yellow Cab San Francisco Rates. http://www.yellowcabsf.com/ourservice/cabfares/ (2011). Accessed 4 July 2011
Zfacts: Current Gas Prices and Price History. Figures from Department of Energy. http://zfacts.com/p/35.html (2010). Accessed 12 July 2011
Acknowledgments
The authors would like to acknowledge Jason Baek, Augustin Chaintreau, Earl Oliver, Lisa Patel, and Dr. Catherine Rosenberg for their assistance with this research.
Author information
Affiliations
Corresponding author
Appendices
Appendix A: Brief CLGN background
In this appendix we provide a brief background on CLGNs. We assume knowledge of standard Bayesian networks; an excellent reference text is (Koller and Friedman 2009).
We first present some necessary definitions.

The graphical model of a problem is a directed acyclic graph G(V, E), where each vertex is a variable and each edge represents a causal effect. The variables may be known (we can directly observe or compute their values) or hidden (we estimate their value because we cannot observe their values directly).

The set of parents Pa(X) of a node X in a graphical model is defined as all nodes Y such that \((Y,X) \in E\) and Y ≠ X.

Variables can be either discrete or continuous; discrete variables can only take values from a countable set of values, such as the integers, whereas continuous variables can be any real number.

A Bayesian network is a directed acyclic graph that defines the relationship P(XPa(X)) between every variable and its parents. The probability of any variable X is independent of all other variables in the network given its parents.
Hybrid models
Standard Bayesian networks contain only discrete variables. A hybrid model contains a mix of both continuous and discrete variables. Several different hybrid models exist; we chose to use conditional linear Gaussian networks (CLGNs). In linear Gaussian models, each variable X is modeled as a linear combination of its parents. CLGNs are extensions of linear Gaussian models that allow for both discrete and continuous variables.
In CLGNs, three types of relationships are defined:

A discrete child with only discrete parents

A continuous child with only continuous parents

A continuous child with a mixture of continuous and discrete parents.
Note that CLGNs do not allow for discrete variables with continuous parents. Other models address this issue, but we do not need these extensions for our application.
Querying conditional linear gaussian networks
To query a variable is to return its Gaussian distribution. To query each of the three types of variables, we use the following formulas.
We consider the simplest case first; a discrete variable with only discrete parents. To express this conditional relationship, we use a discrete conditional probability table (CPT) as in standard Bayesian networks.
Next we consider a continuous variable with only continuous parents. A continuous variable X can take on any real number in the domain of X. Therefore, we cannot have a finite CPT because it would be infinitely large. Instead, we maintain a function of its parents’ values that is used to generate a Gaussian over X. Let X have k parents with means \(pa_1,pa_2,\ldots pa_k\). Under the CLGN model, we specify k + 2 parameters \(\alpha_0, \alpha_1, \ldots, \alpha_k\), and a variance σ^{2} and compute \(P(Xpa_1,pa_2, \ldots pa_k)\) as
That is, the set of αs are linear combination constants; we are calculating a new Gaussian that is a linear combination of other Gaussians (its parents).
Before we examine the third case, we note how σ^{2} is obtained. There are two widely used versions of CLGN’s: those where the variance of each variable depends on the variances of its parents, and those where the variance is assumed to not depend on its parents (Koller and Friedman 2009). We are using the latter simpler model because we do not have data for the variables in Table 1. This model is not as accurate because it ignores covariance between variables and their parents, but is commonly used when the variances of variables in the network are not known, and still captures most of the meaningful relationships (Koller and Friedman 2009). Because we use this model, we do not present background on CLGNs where the variance of each variable X depends on Pa(X); but note these models rely on the theory of multivariate Gaussian distributions.
Finally, we consider the most complex case, a continuous variable with both continuous and discrete parents. Let X be a continuous random variable with j discrete parents and k continuous parents. Let \({\bf D} = \{ D_1, \ldots , D_j \}\) represent the discrete parents of X. Let \({\bf C} = \{C_1, \ldots , C_k \}\) represent the continuous parents of X; we denote the mean of the ith continuous parent c _{ i }. Together, \({\bf D} \bigcup {\bf C} = Pa(X)\). For every combination d chosen from D, we have a (possibly different) vector of k + 2 constants \(\alpha_{d_0}, \alpha_{d_1}, \ldots , \alpha_{d_k}, \sigma^2_d\), and a variance σ_{ d } ^{2} such that
Again, the set of αs are the linear combination constants.
The problem with this approach is that the set of all combinations of d may be massive; even if each discrete parent was binary, we would still have 2^{d} combinations and would need to store (k + 2)2^{d} constants for every variable. A better idea is to store a function for each variable that calculates these k + 2 constants based on its parents at any time. This also allows us to set the α values based on X′s discrete and continuous parents, if needed. Therefore, we introduce a function \({\phi_X({\bf d}, {\bf c}): {\mathbb{R}}^{j+k} \rightarrow {\mathbb{R}}^{k+1}}\). This function ϕ_{ X } takes in all of Pa(X) and generates the α values used in the linear combination. Creating the ϕ functions requires knowledge of the problem; we need encode our knowledge of how variables are dependent upon each other into the network via the ϕ functions. If we were instead storing the constants, then we would need to derive the constants for each variable based on our knowledge of the problem.
Having introduced the ϕ_{ X } function, we rewrite Eq. 23 as:
Whenever we query a variable, we use Eqs. 24 and 25 to calculate the distribution.
Appendix B: General switching station optimization algorithm
As discussed in Related Literature, placing facilities to maximize the number of miles travelled or maximize the number of intercepted flows does not necessarily maximize revenue. We assume the taxi company’s objective is to maximize their overall revenue, and therefore introduce a new optimization framework based on the discretized locations of the taxis and their charge levels. It is also a variation of the flow based facility location model.
We now provide the details of our approach to computing locations for switching stations. First, we show that the problem is NPhard, which implies that it is unlikely to be able to be solved by an algorithm that runs in polynomialtime. Then, we formulate it as an integer program, and propose an algorithm for the problem that works on small instances.
We outline a proof that the switching station location problem is NPhard by a reduction to the facility location problem. The facility location problem is stated as: given a set of clients has some demand from a facility and a cost to build each facility, find the optimal placement of facilities to minimize the cost of the facilities and the cost of serving the clients. The switching station location problem can be reduced to the facility location problem by treating the taxis as clients whose demand varies over time and the switching stations as the facilities that can meet that demand. Therefore, finding the set of optimal switching station locations is also NPhard.
We now formally describe the switching station location problem. First, we introduce the necessary notation. Let L be the set of locations where a switching station can be placed. We denote a taxi by x and the set of all taxis by X. We assume knowledge of a cost function cost(l) for each location \(l \in L\) that is the price of placing a station at l. We use Loc_{ t }(x) to be the location of x at time t and fare_{ t }(x) is True when x has a passenger and False when it does not. We use a binary variable y(l) to indicate if a location has been selected for a switching station. The charge level of \(x \in X\) at timestep t _{ k } is denoted by CL(x, t _{ k }). Let o_{ t }(x, r) be the opportunity cost of an EV with charge level r at time t. For a taxi x, o_{ t }(x, r) should be zero when x’s battery is sufficiently charged; however, as its charge level drops, there is some opportunity cost because the driver will not be able to complete trips over some length, and thus may lose revenue because some passengers cannot be transported to their destination. In our analysis, we define o_{ t }(x, r) to be the sum of taxi x’s fares for the remainder of its shift, once it cannot complete a trip because its charge level r is too low. That is, if x cannot complete a trip at time t, then its opportunity cost is the fares for the trips it would have completed from time t until the end of its shift. Finally, we use tau to be the battery level at which a taxi will always swap its battery if is at the same location as a switching station.
The objective of our optimization problem is stated as given the set of taxis and their temporal mobility patterns, find the optimal location(s) for switching stations such that the taxi company’s profits are maximized. Our mathematical formulation of the switching station location problem is as follows:
subject to:
when L does not contain too many locations (for example, as in our case study below), we can solve the switching station location problem optimally using brute force. That is, we find the value of Eq. 26 for all possible locations of \(1, 2, \ldots, k\) switching stations. The value of k is found by determining the number of switching stations sufficient so that no revenue is lost due to opportunity costs (i.e., we have \(\sum_{x \in T} \sum_t {\rm o}_t(x, {\rm charge}_t(x)) = 0\)). At this point, Eq. 26 is monotonically increasing when more switching stations are added, so we can safely conclude that Eq. 26 is minimized with k or fewer switching stations.
This brute force approach may not be feasible over larger areas with more locations. In this case, it is possible to use heuristic algorithms to find a solution, though these heuristics cannot guarantee the optimality of their solution. Algorithms such as simulated annealing, tabu search, and hill climbing are general optimization methods, and could be used to find approximate solutions to the switching station location problem (Glover and Laguna 1997; Kirkpatrick et al. 1983; Russell and Norvig 2003).
Our formulation of the switching station location problem relies on time series locations of the vehicles that will use the switching stations. Ideally, this location data is collected from multiple vehicles over multiple weeks; however, this data may not be obtainable in some situations. In this case, it is still possible to optimize the placement of switching stations using stochastic facility location algorithms [e.g., (Owen and Daskin 1998; Snyder 2004)]. Such algorithms are designed to optimize facility locations when there is a high amount of uncertainty in the input. These algorithms take a probability distribution of the amount of time vehicles spend at given locations as input. This distribution could be estimated from, e.g., road congestion statistics or logs of passenger pickups and dropoffs.
Rights and permissions
About this article
Cite this article
Carpenter, T., Curtis, A.R. & Keshav, S. The return on investment for taxi companies transitioning to electric vehicles. Transportation 41, 785–818 (2014). https://doi.org/10.1007/s1111601394861
Published:
Issue Date:
Keywords
 Electric vehicles
 Bayesian networks
 Public transportation
 Taxis