Skip to main content

Effects of household structure and accessibility on travel


The concept of accessibility has been widely used in the transportation field, commonly to evaluate transportation planning options. The fundamental hypothesis of many studies related to accessibility could be “greater accessibility leads to more travel”. However, several studies have shown inconsistent results given this common hypothesis, finding instead that accessibility is independent of the trip/tour frequency. In addition, empirical aggregate urban modeling applications commonly produce either non-significant or negative (wrong sign) relationships between accessibility and the trip/tour frequency. For this reason, many practitioners rarely incorporate a measure of accessibility into trip/tour generation models out of consideration of the induced demand. In this context, this study examined the effect of accessibility in urban and suburban residences on the maintenance and discretionary activity tour frequencies of the elderly and the non-elderly using household travel survey data collected in the Seoul Metropolitan Area of Korea. The major finding of this study is that a higher density of land use and better quality of transportation service do not always lead to more tours due to the presence of intra-household interactions, trip chaining, and different travel needs by activity type. This finding implies that accessibility-related studies should not unquestioningly accept the common hypothesis when they apply accessibility measures to evaluate their transportation planning options or incorporate them into their trip/tour generation models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Household Travel Survey in the Seoul Metropolitan Area. Seoul Development Institute, Database Provider: Korea Transport Database Center, Korea Transport Institute, Seoul City (2006)

  2. Time Use Survey. Statistics Korea, South Korea (2009)

  3. Ben-Akiva, M., Gunn, H.F., Silman, L.: Disaggregate trip distribution models. In: Japanese Society of Civil Engineers, Tokyo, Japan (1984)

  4. Crane, R.: On form versus function: will the new urbanism reduce traffic, or increase it? J. Plan. Educ. Res. 15(2), 117–126 (1996). doi:10.1177/0739456X9601500204

    Article  Google Scholar 

  5. Currie, G., Delbosc, A.: Exploring the trip chaining behaviour of public transport users in Melbourne. Transp. Policy 18(1), 204–210 (2011). doi:10.1016/j.tranpol.2010.08.003

    Article  Google Scholar 

  6. Daly, A.: Estimating choice models containing attraction variables. Transp. Res. Part B Methodol. 16(1), 5–15 (1982). doi:10.1016/0191-2615(82)90037-6

    Article  Google Scholar 

  7. Geurs, K.T., van Wee, B.: Accessibility evaluation of land-use and transport strategies: review and research directions. J. Transp. Geogr. 12(2), 127–140 (2004). doi:10.1016/j.jtrangeo.2003.10.005

    Article  Google Scholar 

  8. Handy, S.L.: Regional versus local accessibility: implications for nonwork travel. Transp. Res. Rec. 1400, 58–66 (1993)

    Google Scholar 

  9. Kitamura, R., Akiyama, T., Yamamoto, T., Golob, T.: Accessibility in a metropolis: toward a better understanding of land use and travel. Transp. Res. Rec. 1780, 64–75 (2001). doi:10.3141/1780-08

    Article  Google Scholar 

  10. Kitamura, R., Chen, C., Narayanan, R.: Traveler destination choice behavior: effects of time of day, activity duration, and home location. Transp. Res. Rec. 1645, 76–81 (1998). doi:10.3141/1645-10

    Article  Google Scholar 

  11. McFadden, D.: Modelling the choice of residential location. In: Karlqvist, A., Lundqvist, L., Snickars, F., Weibull, J. (eds.) Spatial interaction theory and planning models, pp. 75–96. North Holland, Amsterdam (1978)

    Google Scholar 

  12. Minocha, I., Sriraj, P.S., Metaxatos, P., Thakuriah, P.: Analysis of transit quality of service and employment accessibility for the greater Chicago, Illinois, Region. Transp. Res. Rec. 2042, 20–29 (2008). doi:10.3141/2042-03

    Article  Google Scholar 

  13. Nakkash, T.Z., Grecco, W.L.: Activity-accessibility models of trip generation. Highway Res. Rec. 392, 98–110 (1972)

    Google Scholar 

  14. O’Neill, W.A., Ramsey, R.D., Chou, J.: Analysis of transit service areas using geographic information systems. Transp. Res. Rec. 1364, 131–138 (1992)

    Google Scholar 

  15. Ohmori, N., Muromachi, Y., Harata, N., Ohta, K.: Travel behavior data collected using GPS and PHS, traffic and transportation studies. In: International Conference on Traffic and Transportation Studies (ICTTS), Beijing, China (2000)

  16. de Dios Ortúzar, J., Willumsen, L.G.: Modelling transport, 4th edn. Wiley, UK (2011)

    Book  Google Scholar 

  17. Spiess, H., Florian, M.: Optimal strategies: a new assignment model for transit networks. Transp. Res. Part B Methodol. 23(2), 83–102 (1989). doi:10.1016/0191-2615(89)90034-9

    Article  Google Scholar 

  18. Swait, J., Louviere, J.: The role of the scale parameter in the estimation and comparison of multinomial logit models. J. Mark. Res. 30(3), 305–314 (1993). doi:10.2307/3172883

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sang-Eon Seo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seo, SE., Ohmori, N. & Harata, N. Effects of household structure and accessibility on travel. Transportation 40, 847–865 (2013).

Download citation


  • Elderly
  • Household structure
  • Accessibility
  • Non-work activity