Advertisement

Transportation

, Volume 36, Issue 5, pp 581–599 | Cite as

A traffic analysis zone definition: a new methodology and algorithm

  • Luis M. MartínezEmail author
  • José Manuel Viegas
  • Elisabete A. Silva
Article

Abstract

This paper develops a comprehensive approach to the definition of transportation analysis zones (TAZ), and therein, presents a new methodology and algorithm for the definition of TAZ embedded in geographic information systems software, improves the base algorithm with several local algorithms, and comprehensively analyses the obtained results. The results obtained are then compared to these presently used in the transportation analysis process of the Lisbon Metropolitan Area. The proposed algorithm presents a new methodology for TAZ design based on a smoothed density surface of geocoded travel demand data. The algorithm aims to minimise the loss of information when moving from a continuous representation of the origin and destination of each trip to their discrete representations through zones, and focuses on the trade-off between the statistical precision, geographical error, and the percentage of intra-zonal trips of the resulting OD matrix. The results for the Lisbon Metropolitan Area case study suggest a significant improvement in OD matrix estimates compared to current transportation analysis practises based on administrative units.

Keywords

TAZ (transportation analysis zones) Transportation planning studies Transportation demand models GIS (geographic information systems) 

Notes

Acknowledgments

This research has been supported by the Portuguese National Science Foundation (FCT) since 2004. We thank the consultancy TIS.pt for providing support by making the LMA Mobility Survey (TIS, 1994) available and the software company INTERGRAPH for the Geomedia Professional 5.1 license.

References

  1. Amrhein, C.G.: Searching for the elusive aggregation effect—evidence from statistical simulations. Environ. Plan. A 27(1), 105–119 (1995)CrossRefGoogle Scholar
  2. Baass, K.G.: Design of zonal systems for aggregate transportation planning models. Transp. Res. Rec.—Travel. Demand. Forecast. Data. Consid. 807, 1–6 (1981)Google Scholar
  3. Batty, M.: Spatial entropy. Geogr. Anal. 6(1), 1–31 (1974)Google Scholar
  4. Batty, M.: Entropy in spatial aggregation. Geogr. Anal. 8(1), 1–21 (1976)Google Scholar
  5. Batty, M., Sikdar, P.K.: Spatial aggregation in gravity models.1. An information-theoretic framework. Environ. Plan. A 14(3), 377–405 (1982a)CrossRefGoogle Scholar
  6. Batty, M., Sikdar, P.K.: Spatial aggregation in gravity models.2 One-dimensional population-density models. Environ. Plan. A 14(4), 525–553 (1982b)CrossRefGoogle Scholar
  7. Batty, M., Sikdar, P.K.: Spatial aggregation in gravity models.3. Two-dimensional trip distribution and location models. Environ. Plan. A 14(5), 629–658 (1982c)CrossRefGoogle Scholar
  8. Batty, M., Sikdar, P.K.: Spatial aggregation in gravity models.4. Generalizations and large-scale applications. Environ. Plan. A 14(6), 795–822 (1982d)CrossRefGoogle Scholar
  9. Bennion, M.W., O’Neill, W.A.: Building transportation analysis zones using geographical information systems. Trasp. Res. Rec.—Multimodal. Prior. Setting. Appl. Geogr. Inf. Syst. 1429, 49–56 (1994)Google Scholar
  10. Binetti, M., Ciani, E.: Effects of traffic analysis zones design on transportation models. In: Proceedings of the 9th Meeting of the Euro Working Group on Transportation, Bari, Italy (2002)Google Scholar
  11. Chang, K.T., Khatib, Z., Ou, Y.M.: Effects of zoning structure and network detail on traffic demand modeling. Environ. Plan. B-Plan. Des. 29(1), 37–52 (2002)CrossRefGoogle Scholar
  12. Chapleau, R.: Conducting telephone origin—destination household surveys with an integrated informational approach. In: Proceedings of the International Conference on Transport Survey Quality and Innovation, Grainau, Transportation Research Board (1997)Google Scholar
  13. Chesbon, G., Cheryl, P.: Using GIS to define and develop TAZ data. In: Proceedings of the 4th International Conference on Microcomputers in Transportation, Baltimore, Maryland (1992)Google Scholar
  14. Clark, W.A.V., Avery, K.L.: Effects of data aggregation in statistical-analysis. Geogr. Anal. 8(4), 428–438 (1976)Google Scholar
  15. Crevo, C.C.: Impacts of zonal reconfigurations on travel demand forecasts. Transp. Res. Rec. 1477, 72–80 (1991)Google Scholar
  16. Ding, C.: Impact analysis of spatial data aggregation on transportation forecasted demand. In: Proceedings of the Urban and Regional Information System Association (URISA) Conference, Washington DC, URISA (1994)Google Scholar
  17. Ding, C.: The GIS-based human-interactive TAZ design algorithm: examining the impacts of data aggregation on transportation-planning analysis. Environ. Plan. B-Plan. Des. 25(4), 601–616 (1998)CrossRefGoogle Scholar
  18. Ding, C., Choi, K., Kim, T.J.: GIS-based traffic analysis zone design. In: Proceedings of the 3rd International Conference on Computers in Urban Planning and Urban Management, Atlanta (1993)Google Scholar
  19. Eagleson, S., Escobar, F., Williamson, I.: Hierarchical spatial reasoning theory and GIS technology applied to the automated delineation of administrative boundaries. Comput. Environ. Urban. Syst. 26(2–3), 185 (2002)CrossRefGoogle Scholar
  20. Edwards, J.D.: Transportation planning handbook, 2nd edn. Institute of Transportation Engineers, Washington DC (1992)Google Scholar
  21. Fotheringham, A.S., Rogerson, P.A.: GIS and spatial analytical problems. Int. J. Geogr. Inf. Syst. 7(1), 3–19 (1993)CrossRefGoogle Scholar
  22. Fotheringham, A.S., Wong, D.W.S.: The modifiable areal unit problem in multivariate statistical-analysis. Environ. Plan. A 23(7), 1025–1044 (1991)CrossRefGoogle Scholar
  23. Gan, C.-T.: A GIS-aided procedure for converting census data for transportation planning. ITE J.-Inst. Transp. Eng. 64(11), 34–40 (1994)Google Scholar
  24. Goodchild, M.F.: Aggregation problem in location-allocation. Geogr. Anal. 11(3), 240–255 (1979)Google Scholar
  25. Keane, M.: Size of region-building problem. Environ. Plan. A 7(5), 575–577 (1975)CrossRefGoogle Scholar
  26. Martínez, L.: “TAZ delineation and information loss in transportation planning studies”. MS Dissertation submitted in Department of Civil and Architecture, IST-Technical University of Lisbon, Lisbon, Portugal (2006)Google Scholar
  27. Masser, I., Brown, P.J.B.: Hierarchical aggregation procedures for interaction data. Environ. Plan. A 7(5), 509–523 (1975)CrossRefGoogle Scholar
  28. Morphet, C.S.: A statistical method for the identification of spatial clusters. Environ. Plan. A 29(6), 1039–1055 (1997)CrossRefGoogle Scholar
  29. O’Neill, W.A.: Developing optimal transportation analysis zones using GIS. ITE J.-Inst. Transp. Eng. 61(12), 33–36 (1991)Google Scholar
  30. Openshaw, S.: Optimal zoning systems for spatial interaction models. Environ. Plan. A 9(2), 169–184 (1977)CrossRefGoogle Scholar
  31. Openshaw, S., Rao, L.: Algorithms for reengineering 1991 census geography. Environ. Plan. A 27(3), 425–446 (1995)CrossRefGoogle Scholar
  32. Openshaw, S., Taylor, P.J.: A million or so correlation coefficients: three experiments on the modifiable areal unit problem. In: Wringley, N. (ed.) Statistical applications in the spatial sciences, pp. 127–144. Pion, London (1979)Google Scholar
  33. Ortúzar, J., Willumsen, L.: Modeling transport, 3rd edn. Wiley, New York (2001)Google Scholar
  34. Robinson, W.S.: Ecological correlations and the behavior of individuals. Am. Sociol. Rev. 5(3), 351–357 (1950)CrossRefGoogle Scholar
  35. Scott, A.J.: Combinatorial programming spatial analysis and planning. Methuen & Co., Ltd., London (1971)Google Scholar
  36. Trepanier, M., Chapleau, R.: Object-oriented and totally disaggregate analysis of origin-destination household survey data. Can. J. Civ. Eng. 28(1), 48–58 (2001)CrossRefGoogle Scholar
  37. Viegas, J., Martínez, L., Silva, E.: Modifiable areal unit problem effects on traffic analysis zones delineation. Environ. Plan. B (2008). doi: 10.1068/b34033 Google Scholar
  38. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)CrossRefGoogle Scholar
  39. Wong, D., Amrhein, C.: Research on the MAUP: old wine in a new bottle or real breakthrough. Geogr. Syst. 3, 73–76 (1996)Google Scholar
  40. Xie, Y.: The overlaid network algorithms for areal interpolation problem. Comput. Environ. Urban. Syst. 19(4), 287 (1995)CrossRefGoogle Scholar
  41. You, J.S., Nedovic, Z., Kim, T.J.: A GIS-based traffic analysis zone design: implementation and evaluation. Transp. Plan. Technol. 21(1–2), 69–91 (1997a)CrossRefGoogle Scholar
  42. You, J.S., Nedovic, Z., Kim, T.J.: A GIS-based traffic analysis zone design: technique. Transp. Plan. Technol. 21(1–2), 45–68 (1997b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Luis M. Martínez
    • 1
    Email author
  • José Manuel Viegas
    • 1
  • Elisabete A. Silva
    • 2
  1. 1.CESUR, Department of Civil Engineering, Instituto Superior TécnicoLisbon Technical UniversityLisbonPortugal
  2. 2.Department of Land EconomyUniversity of CambridgeCambridgeUK

Personalised recommendations