Skip to main content

Inaction on Climate Change Projected to Reduce European Life Expectancy


Climate change-related excess mortality estimates clearly demonstrate a dramatic impact on public health and human mortality. However, life expectancy at birth is more easily communicated and understood by the public. By properly situating climate change mortality within the contexts of life expectancy, we better represent the cost of climate change on longevity. In this paper, we convert excess mortality estimates due to increases in extreme weather from climate change (heat waves, cold waves, droughts, wildfires, river and coastal floods, and windstorms) into potential reductions in life expectancy at birth in thirty-one European countries. We project climate change extremes to reduce life expectancy at birth by 0.24 years for the average European country with differences in excess of 1.0 years in some countries by 2100. We only estimate the impact of mortality directly related to climate extremes, making our estimates conservative. Thus, the cost of inaction on climate change could approach, and likely to exceed, one year of life in some European countries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. “The fatality data from the two databases considered is likely to not include increased deaths from common causes that were observed to rise at the population level but for which individual deaths could not be attributed to the event. For example,... increased risk of cardiovascular and respiratory deaths… may be severely under-reported in the EMDAT and NatCatSERVICE.” (see (Forzieri et al., 2017), pp. 9, Supplementary Materials).

  2. GBD data can be retrieved here:


  • Abel, G. J., Barakat, B., Samir, K., & Lutz, W. (2016). Meeting the sustainable development goals leads to lower world population growth. Proceedings of the National Academy of Sciences, 113(50), 14294–14299.

    Article  Google Scholar 

  • Arias, E., Heron, M., & Tejada-Vera, B. (2013), ‘United states life tables eliminating certain causes of death, 1999-2001.’, National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System61(9), 1–128.

  • Barnett, J., & Adger, W. N. (2007). Climate change, human security and violent conflict. Political Geography, 26(6), 639–655.

    Article  Google Scholar 

  • Beltrán-Sánchez, H., Preston, S. H., & Canudas-Romo, V. (2008). An integrated approach to cause-of-death analysis: cause-deleted life tables and decompositions of life expectancy. Demographic Research, 19, 1323.

    Article  Google Scholar 

  • Cloyd, E., Moser, S. C., Maibach, E., Maldonado, J., & Chen, T. (2016). Engagement in the third us national climate assessment: commitment, capacity, and communication for impact. Climatic Change, 135(1), 39–54.

    Article  Google Scholar 

  • Ebi, K. L., Kovats, R. S., & Menne, B. (1930). (2006), ‘An approach for assessing human health vulnerability and public health interventions to adapt to climate change’. Environmental health perspectives, 114(12), 1930-1934

  • Forzieri, G., Cescatti, A., eSilva, F. B., & Fayen, L. (2017). Increasing risk over time of weather-related hazards to the european population: A data-driven prognostic study. The Lancet Planetary Health, 1(5), e200–e208.

    Article  Google Scholar 

  • Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., et al. (2014). World population stabilization unlikely this century. Science, 346(6206), 234–237.

    Article  Google Scholar 

  • Global Burden of Disease Study (2017), ‘Global burden of disease study 2015 (gbd 2015) results’, pp. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2016. Available from–results–tool. For terms and conditions of use, please visit

  • Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalán, C. (2006). Climate change and human health: impacts, vulnerability and public health. Public Health, 120(7), 585–596.

    Article  Google Scholar 

  • Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., et al. (2017). Estimating economic damage from climate change in the united states. Science, 356(6345), 1362–1369.

    Article  Google Scholar 

  • Jiang, L. (2014). Internal consistency of demographic assumptions in the shared socioeconomic pathways. Population Environment, 35(3), 261–285.

    Article  Google Scholar 

  • Keatinge, W., Donaldson, G., Cordioli, E., Martinelli, M., Kunst, A., Mackenbach, J., et al. (2000). Heat related mortality in warm and cold regions of europe: observational study. Bmj, 321(7262), 670–673.

    Article  Google Scholar 

  • Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., & Senior, C. A. (2014). Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Climate Change, 4(7), 570.

    Article  Google Scholar 

  • Kovats, R., Ebi, K., Menne, B., Campbell-Lendrum, D., Canziani, O., Githeko, A., Kuhn, K., Le Sueur, D., Martens, P., McMichael, A. et al. (2003), Methods of assessing human health vulnerability and public health adaptation to climate change, WHOHealth CanadaUNEPWMO.

  • Lee, J. Y., & Kim, H. (2017). Comprehensive assessment of climate change risks. The Lancet Planetary Health, 1(5), e166–e167.

    Article  Google Scholar 

  • Marmot, M., Allen, J., Bell, R., & Goldblatt, P. (2012). Building of the global movement for health equity: from santiago to rio and beyond. The Lancet, 379(9811), 181–188.

    Article  Google Scholar 

  • McMichael, A. J., Woodruff, R. E., & Hales, S. (2006). Climate change and human health: Present and future risks. The Lancet, 367(9513), 859–869.

    Article  Google Scholar 

  • Melillo, J. M., Richmond, T., Ŷohe, G. (2014), ‘Climate change impacts in the united states’, Third National Climate Assessment .

  • O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., et al. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180.

    Article  Google Scholar 

  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P. et al. (2014), Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC.

  • Parrish, R. G. (2010). Peer reviewed: Measuring population health outcomes. Preventing chronic disease, 7(4),

  • Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438(7066), 310.

    Article  Google Scholar 

  • Ramos, A. M., Trigo, R. M., Liberato, M. L., & Tomé, R. (2015). Daily precipitation extreme events in the iberian peninsula and its association with atmospheric rivers. Journal of Hydrometeorology, 16(2), 579–597.

    Article  Google Scholar 

  • Rechel, B., Doyle, Y., Grundy, E., McKee, M., Organization, W. H. et al. (2009), ‘How can health systems respond to population ageing’.

  • Rigaud, K. K., De Sherbinin, A. M., Jones, B., Bergmann, J., Clement, V., Ober, K., et al. (2018). Groundswell: Preparing for internal climate migration. Washington, DC: World Bank.

    Book  Google Scholar 

  • Rosenzweig, C., Solecki, W., Hammer, S. A., & Mehrotra, S. (2010). Cities lead the way in climate-change action. Nature, 467(7318), 909.

    Article  Google Scholar 

  • Salomon, J. A., Wang, H., Freeman, M. K., Vos, T., Flaxman, A. D., Lopez, A. D., et al. (2012). Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the global burden disease study 2010. The Lancet, 380(9859), 2144–2162.

    Article  Google Scholar 

  • Samir, K., & Lutz, W. (2017). The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 42, 181–192.

    Article  Google Scholar 

  • United Nations (2015), ‘World Population Prospects: The 2017 revision. methodology of the United Nations population estimates and projections’.

  • Wang, H., Dwyer-Lindgren, L., Lofgren, K. T., Rajaratnam, J. K., Marcus, J. R., Levin-Rector, A., et al. (2012). Age-specific and sex-specific mortality in 187 countries, 1970–2010: A systematic analysis for the global burden of disease study 2010. The Lancet, 380(9859), 2071–2094.

    Article  Google Scholar 

  • Wilson, A., Reich, B. J., Nolte, C. G., Spero, T. L., Hubbell, B., & Rappold, A. G. (2017). Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces. Journal of Exposure Science and Environmental Epidemiology, 27(1), 118–124.

    Article  Google Scholar 

  • World Health Organization (2015), World health statistics 2015, World Health Organization.

  • Zanobetti, A., O’neill, M. S., Gronlund, C. J., & Schwartz, J. D. (2012). Summer temperature variability and long-term survival among elderly people with chronic disease. Proceedings of the National Academy of Sciences, 109(17), 6608–6613.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mathew E. Hauer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hauer, M.E., Santos-Lozada, A.R. Inaction on Climate Change Projected to Reduce European Life Expectancy. Popul Res Policy Rev 40, 629–638 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Climate change
  • Life expectancy
  • Mortality
  • Europe