Comparability of Mortality Estimates from Social Surveys and Vital Statistics Data in the United States

Abstract

Social surveys prospectively linked with death records provide invaluable opportunities for the study of the relationship between social and economic circumstances and mortality. Although survey-linked mortality files play a prominent role in U.S. health disparities research, it is unclear how well mortality estimates from these datasets align with one another and whether they are comparable with U.S. vital statistics data. We conduct the first study that systematically compares mortality estimates from several widely used survey-linked mortality files and U.S. vital statistics data. Our results show that mortality rates and life expectancies from the National Health Interview Survey Linked Mortality Files, Health and Retirement Study, Americans’ Changing Lives study, and U.S. vital statistics data are similar. Mortality rates are slightly lower and life expectancies are slightly higher in these linked datasets relative to vital statistics data. Compared with vital statistics and other survey-linked datasets, General Social Survey-National Death Index life expectancy estimates are much lower at younger adult ages and much higher at older adult ages. Cox proportional hazard models regressing all-cause mortality risk on age, gender, race, educational attainment, and marital status conceal the issues with the General Social Survey-National Death Index that are observed in our comparison of absolute measures of mortality risk. We provide recommendations for researchers who use survey-linked mortality files.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    We focus on potential sources of systematic bias. Sampling error will cause mortality estimates to vary between SLMFs when survey samples are different (Crimmins et al. 2004). However, sampling error should have modest effects on mortality estimate comparability because it is randomly distributed in surveys that contain large probability samples which are designed to be nationally representative of the non-institutionalized U.S. adult population. The survey samples contained in most SLMFs, including the ones analyzed herein, meet these criteria.

  2. 2.

    Respondents’ birth month is not available publicly in the 2000–2010 GSS, but the survey contains respondents’ zodiac sign. This information is used to randomly impute missing birth months in the 2000–2010 GSS. Zodiac sign is missing when birth month is missing in the 1986–1998 GSS. Births are assumed to occur mid-year when both birth month and zodiac sign are missing.

  3. 3.

    Table 6 in the Appendix displays mortality rates (per 100,000) at additional ages from U.S. vital statistics, NHIS-LMF, ACL, HRS, and the GSS-NDI for women, men, and both genders combined.

  4. 4.

    Strategies that analysts can use to alter linkage criteria are described elsewhere (NCHS 2018, p. 18).

References

  1. Andreev, E. M., & Shkolnikov, V. M. (2010). Spreadsheet for calculation of confidence limits for any life table or healthy-life table quantity. Max Planck Institute for Demographic Research Technical Report.

  2. Arias, E., Eschbach, K., Schauman, W. S., Backlund, E. L., & Sorlie, P. D. (2010). The Hispanic mortality advantage and ethnic misclassification on U.S. death certificates. American Journal of Public Health, 100(Suppl 1), S171–S177.

    Article  Google Scholar 

  3. Black, D. A., Hsu, Y. C., Sanders, S. G., Schofield, L. S., & Taylor, L. J. (2017). The Methuselah effect: The pernicious impact of unreported deaths on old-age mortality estimates. Demography, 54(6), 2001–2024.

    Article  Google Scholar 

  4. Blewett, L. A., Rivera Drew, J. A., Griffin, R., King, M. L., & Williams, K. C. W. (2018). IPUMS Health Surveys: National Health Interview Survey, version 6.3. Retrieved from http://doi.org/10.18128/D070.V6.3.

  5. Brown, D. C., Hayward, M. D., Montez, J. K., Hummer, R. A., Chiu, C. T., & Hidajat, M. M. (2012). The significance of education for mortality compression in the United States. Demography, 49(3), 819–840.

    Article  Google Scholar 

  6. Bugliari, D., Campbell, N., Chan, C., Hayden, O., Hurd, M., Main, R., et al. (2016). RAND HRS data documentation, version P. Santa Monica: RAND Center for the Study of Aging.

    Google Scholar 

  7. Chapman, B. P., Fiscella, K., Kawachi, I., Duberstein, P., & Muennig, P. (2013). Emotion suppression and mortality risk over a 12-year follow-up. Journal of Psychosomatic Research, 75(4), 381–385.

    Article  Google Scholar 

  8. Crimmins, E. M., Hayward, M. D., & Seeman, T. E. (2004). Race/ethnicity, socioeconomic status, and health. In N. B. Anderson, R. A. Bulatao, & B. Cohen (Eds.), Critical perspectives on racial and ethnic differences in health in late life (pp. 310–352). Washington, DC: National Academies Press.

    Google Scholar 

  9. Curb, J. D., Ford, C. E., Pressel, S., Palmer, M., Babcock, C., & Hawkins, C. M. (1985). Ascertainment of vital status through the National Death Index and the Social Security Administration. American Journal of Epidemiology, 121(5), 754–766.

    Article  Google Scholar 

  10. Dahlhamer, J. M., & Cox, C. S. (2007). Respondent consent to link survey data with administrative records: Results from a split-ballot field test with the 2007 National Health Interview Survey. Proceedings of the Federal Committee on Statistical Methodology Research Conference. Washington, DC.

  11. Harron, K., Goldstein, H., & Dibben, C. (Eds.). (2015). Methodological developments in data linkage. West Sussex: Wiley.

    Google Scholar 

  12. Hayward, M. D., & Gorman, B. K. (2004). The long arm of childhood: The influence of early-life social conditions on men’s mortality. Demography, 41(1), 87–107.

    Article  Google Scholar 

  13. Hogan, H., Cantwell, P. J., Devine, J., Mule, V. T., & Velkoff, V. (2013). Quality and the 2010 Census. Population Research and Policy Review, 32(5), 637–662.

    Article  Google Scholar 

  14. House, J. S. (2014). Americans’ Changing Lives: Waves I, II, III, IV, and V, 1986, 1989, 1994, 2002, and 2011. [Computer file] ICPSR04690-v7. Ann Arbor: Inter-university Consortium for Political and Social Research.

    Google Scholar 

  15. Human Mortality Database. (2018). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). www.mortality.org.

  16. Hummer, R. A., Rogers, R. G., Nam, C. B., & Ellison, C. G. (1999). Religious involvement and U.S. adult mortality. Demography, 36(2), 273–285.

    Article  Google Scholar 

  17. Ingram, D. D., Lochner, K. A., & Cox, C. S. (2008). Mortality experience of the 1986–2000 National Health Interview Survey Linked Mortality Files participants. Hyattsville: National Center for Health Statistics.

    Google Scholar 

  18. Kim, J., Shin, H. C., Rosen, Z., Kang, J. H., Dykema, J., & Muennig, P. (2015). Trends and correlates of consenting to provide Social Security numbers: Longitudinal findings from the General Social Survey (1993–2010). Field Methods, 27(4), 348–362.

    Article  Google Scholar 

  19. King, N. B., Harper, S., & Young, M. E. (2012). Use of relative and absolute effect measures in reporting health inequalities: Structured review. BMJ, 345(e5774), 1–8.

    Google Scholar 

  20. Lariscy, J. T. (2011). Differential record linkage by Hispanic ethnicity and age in linked mortality studies: Implications for the epidemiologic paradox. Journal of Aging and Health, 23(8), 1263–1284.

    Article  Google Scholar 

  21. Lariscy, J. T. (2017). Black-white disparities in adult mortality: Implications of differential record linkage for understanding the mortality crossover. Population Research and Policy Review, 36(1), 137–156.

    Article  Google Scholar 

  22. Lariscy, J. T., Hummer, R. A., & Hayward, M. D. (2015). Hispanic older adult mortality in the United States: New estimates and an assessment of factors shaping the Hispanic paradox. Demography, 52(1), 1–14.

    Article  Google Scholar 

  23. Lawrence, E. M., Rogers, R. G., & Wadsworth, T. (2015). Happiness and longevity in the United States. Social Science and Medicine, 145, 115–119.

    Article  Google Scholar 

  24. Lee, Y., Muennig, P., Kawachi, I., & Hatzenbuehler, M. L. (2015). Effects of racial prejudice on the health of communities: A multilevel survival analysis. American Journal of Public Health, 105(11), 2349–2355.

    Article  Google Scholar 

  25. Morey, B. N., Gee, G. C., Muennig, P., & Hatzenbuehler, M. L. (2018). Community-level prejudice and mortality among immigrant groups. Social Science and Medicine, 199, 56–66.

    Article  Google Scholar 

  26. Muennig, P., Johnson, G., Kim, J., Smith, T. W., & Rosen, Z. (2011). The General Social Survey-National Death Index: An innovative new dataset for the social sciences. BMC Research Notes, 4(385), 1–6.

    Google Scholar 

  27. Muennig, P., Rosen, Z., & Johnson, G. (2013). Do the psychosocial risks associated with television viewing increase mortality? Evidence from the 2008 General Social Survey-National Death Index dataset. Annals of Epidemiology, 23(6), 355–360.

    Article  Google Scholar 

  28. Muennig, P., Rosen, Z., Johnson, G., & Smith, T. W. (2016). Codebook for the 1978–2010 General Social Survey linked to mortality data through 12/31/2014 via the National Death Index. Retrieved from www.gssndi.com.

  29. National Center for Health Statistics. (2018). The linkage of National Center for Health Statistics survey data to the National Death Index—2015 Linked Mortality File (LMF): Methodology overview and analytic considerations. Hyattsville, MD. Retrieved from https://www.cdc.gov/nchs/data/datalinkage/LMF2015_Methodology_Analytic_Considerations.pdf.

  30. National Center for Health Statistics, Office of Analysis and Epidemiology. (2009). National Health Interview Survey (19862004) Linked Mortality Files, mortality follow-up through 2006: Matching methodology. Hyattsville, MD. Retrieved from http://www.cdc.gov/nchs/data/datalinkage/matching_methodology_nhis_final.pdf.

  31. National Center for Health Statistics, Office of Analysis and Epidemiology. (2013). NCHS 2011 Linked Mortality Files matching methodology. Hyattsville.

  32. National Opinion Research Center. (2016). General Social Survey-National Death Index 19782010. Retrieved from http://gss.norc.org/get-the-data.

  33. Pabayo, R., Kawachi, I., & Muennig, P. (2015). Political party affiliation, political ideology, and mortality. Journal of Epidemiology and Community Health, 69(5), 423–431.

    Article  Google Scholar 

  34. Pablos-Méndez, A. (1994). Mortality among Hispanics. Journal of the American Medical Association, 271(16), 1237.

    Article  Google Scholar 

  35. Palloni, A., & Arias, E. (2004). Paradox lost: Explaining the Hispanic adult mortality advantage. Demography, 41(3), 385–415.

    Article  Google Scholar 

  36. Preston, S. H., Elo, I. T., Rosenwaike, I., & Hill, M. (1996). African-American mortality at older ages: Results of a matching study. Demography, 33(2), 193–209.

    Article  Google Scholar 

  37. Preston, S. H., & Taubman, P. (1994). Socioeconomic differences in adult mortality and health status. In L. G. Martin & S. H. Preston (Eds.), Demography of aging. Washington, DC: National Academies Press.

    Google Scholar 

  38. Rogers, R. G., Carrigan, J. A., & Kovar, M. G. (1997). Comparing mortality estimates based on different administrative records. Population Research and Policy Review, 16(13), 213–224.

    Article  Google Scholar 

  39. Rogers, R. G., Everett, B. G., Zajacova, A., & Hummer, R. A. (2010). Educational degrees and adult mortality risk in the United States. Biodemography and Social Biology, 56(1), 80–99.

    Article  Google Scholar 

  40. Rogers, R. G., Hummer, R. A., & Nam, C. B. (2000). Living and dying in the USA: Behavioral, health, and social differentials of adult mortality. San Diego: Academic Press.

    Google Scholar 

  41. Soldo, B. J., Hurd, M. D., Rodgers, W. L., & Wallace, R. B. (1997). Assets and health dynamics among the oldest old: An overview of the AHEAD study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 52B(Special Issue), 1–20.

    Article  Google Scholar 

  42. Sonnega, A., Faul, J. D., Ofstedal, M. B., Langa, K. M., Phillips, J. W. R., & Weir, D. R. (2014). Cohort profile: The Health and Retirement Study (HRS). International Journal of Epidemiology, 43(2), 576–585.

    Article  Google Scholar 

  43. StataCorp. (2013). Stata statistical software: Release 13. College Station: StataCorp LP.

    Google Scholar 

  44. Stewart, Q. T., Cobb, R. J., & Keith, V. M. (2018). The color of death: Race, observed skin tone, and all-cause mortality in the United States. Ethnicity & Disease. https://doi.org/10.1080/13557858.2018.1469735.

    Google Scholar 

  45. Teachman, J. D., & Hayward, M. D. (1993). Interpreting hazard rate models. Sociological Methods & Research, 21(3), 340–371.

    Article  Google Scholar 

  46. Warner, D. F., & Hayward, M. D. (2006). Early-life origins of the race gap in men’s mortality. Journal of Health and Social Behavior, 47(3), 209–226.

    Article  Google Scholar 

  47. Weir, D. R. (2016). Validating mortality ascertainment in the Health and Retirement Study. Retrieved from https://hrs.isr.umich.edu/sites/default/files/biblio/Weir_mortality_ascertainment.pdf.

Download references

Acknowledgements

An earlier draft of this paper was presented at the 2016 meeting of the Population Association of America meeting, Washington, DC. This research received support from NICHD Center (R24 HD041028) and NIA Training (T32 AG000221) grants to the Population Studies Center at the University of Michigan and an NIA Training (T32 AG000139) grant to the Duke Population Research Institute at Duke University. We thank the Americans’ Changing Lives working group at the University of Michigan, Audrey Dorelien, Benjamin Walker, and three anonymous PRPR reviewers for helpful comments. We also thank the Human Mortality Database, Minnesota Population Center and State Health Access Data Assistance Center, National Center for Health Statistics, and National Opinion Research Center for providing the datasets used in this analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dustin C. Brown.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 6 and 7.

Table 6 Age-specific mortality rates per 100,000 in U.S. vital statistics, NHIS-LMF, HRS, ACL, and GSS-NDI
Table 7 Life expectancies at selected ages in U.S. vital statistics, NHIS-LMF, HRS, ACL, and GSS-NDI

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brown, D.C., Lariscy, J.T. & Kalousová, L. Comparability of Mortality Estimates from Social Surveys and Vital Statistics Data in the United States. Popul Res Policy Rev 38, 371–401 (2019). https://doi.org/10.1007/s11113-018-9505-1

Download citation

Keywords

  • Mortality
  • Vital statistics
  • Record linkage
  • Survey-linked mortality files
  • National Death Index