Population Research and Policy Review

, Volume 26, Issue 5–6, pp 477–509 | Cite as

Spatial Demography: An Opportunity to Improve Policy Making at Diverse Decision Levels

Article

Abstract

The number of applications of spatial demography has been growing mostly since the 1990s. Ranging from simple visualization to sophisticated spatial analytical techniques, these applications bring a new layer of explanation to demographic phenomena. This paper reviews demographic studies that specifically addressed space with spatial statistical models, and that focused on fertility, mortality, migration, and population models. Additionally, it summarizes different spatial datasets and software freely available, as well as the challenges that exist for the development of spatial demography applications. These challenges include confidentiality issues, scale problems, and the lack of training on spatial analysis in population centers. Although the first and second challenges involve modeling and technical solutions, the latter depends only on demographers’ commitment and willingness to promote change. Several topics for future spatially focused research are also outlined. Finally, the paper makes a strong case regarding the significant contribution that spatial demography can make to the monitoring, evaluation, and implementation of population policies.

Keywords

Demography training Policy making Spatial demography Spatial analysis 

References

  1. Akkerman, A. (1992). Fuzzy targeting of population niches in urban planning and the fractal dimension of demographic change. Urban Studies, 29(7), 1093–1114.Google Scholar
  2. Ali, M., Park, J.-K., Thiem, V. D., Canh, D. G., Emch, M., & Clemens, J. D. (2005). Neighborhood size and local geographic variation of health and social determinants. International Journal of Health Geographics, 4(12), DOI 10.1186/1476-072X-4-12.Google Scholar
  3. Anselin, L. (1988). Spatial econometrics: Methods and models. Boston MA: Kluwer Academic Publishers.Google Scholar
  4. Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.CrossRefGoogle Scholar
  5. Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38(1), 5–22.Google Scholar
  6. Armstrong, M. P., Rushton, G., & Zimmerman, D. L. (1999). Geographically masking health data to preserve confidentiality. Statistics in Medicine, 18, 497–525.Google Scholar
  7. Assunção, R. M., Schmertmann, C. P., Potter, J. E., & Cavenaghi, S. M. (2005). Empirical Bayes estimation of demographic schedules for small areas. Demography, 42(3), 537–558.Google Scholar
  8. Bailey, T. C., & Gatrell, A. C. (1995). Interactive spatial data analysis. Harlow Essex, England: Longman Scientific & Technical, J. Wiley.Google Scholar
  9. Balabdaoui, F., Bocquet-Appel, J.-P., Lajaunie, C., & Rajan, S. I. (2001). Space-time evolution of the fertility transition in India, 1961–1991. International Journal of Population Geography, 7, 129–148.Google Scholar
  10. Balk, D., Pullum, T., Storeygard, A., Greenwell, F., & Neuman, M. (2004). Spatial analysis of childhood mortality in West Africa. Population, Space and Place, 10, 175–216.Google Scholar
  11. Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., & Nelson, A. (2006). Determining global population distribution: Methods, applications and data. In S. I. Hay, A. Graham, & D. Rogers (Eds.), Global mapping of infectious diseases: Methods, examples and emerging applications. Advances in Parasitology (Vol. 62, pp. 119–156). New York: Academic Press.Google Scholar
  12. Bivand, R. (2006). Implementing spatial data analysis software tools in R. Geographical Analysis, 38(1), 23–40.Google Scholar
  13. Bocquet-Appel, J.-P., & Bacro, J. N. (1994). Generalized wombling. Systematic Biology, 3, 316–329.Google Scholar
  14. Bocquet-Appel, J.-P., Courgeau, D., & Pumain, D. (1996). Spatial analysis of biodemographic data. Paris, France: John Liberty Eurotext/INED.Google Scholar
  15. Bocquet-Appel, J.-P., & Jakobi, L. (1996). Barriers to the spatial diffusion for the demographic transition in Western Europe. In J.-P. Bocquet-Appel, D. Courgeau, & D. Pumain (Eds.), Spatial analysis of biodemographic data (pp. 117–129). Paris, France: John Liberty Eurotext/INED.Google Scholar
  16. Bocquet-Appel, J.-P., & Jakobi, L. (1998). Evidence for a spatial diffusion of contraception at the onset of the fertility transition in Victorian Britain. Population, English selection: New methodological approaches in the social sciences, 10(1), 181–204.Google Scholar
  17. Bocquet-Appel, J.-P., Rajan, S. I., Bacro, J. N., & Lajaunie, C. (2002). The onset of India’s fertility transition. European Journal of Population, 18(3), 211–232.Google Scholar
  18. Bracken, I., & Martin, D. (1989). The generation of spatial population distributions from census centroid data. Environment and Planning A, 21, 537–543.Google Scholar
  19. Bradshaw, T. K., & Muller, B. (2004). Shaping policy decisions with spatial analysis. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science: Examples in best practice (pp. 300–322). New York: Oxford University Press.Google Scholar
  20. Brass, W. (1968). The demography of tropical Africa. Princeton NJ: Princeton University Press.Google Scholar
  21. Brown, L. A., & Jones, J. P. I (1985). Spatial variation in migration processes and development: A Costa Rican example of conventional modeling augmented by the expansion method. Demography, 22(3), 327–352.Google Scholar
  22. Caldwell, J. C. (1996). Demography and social science. Population Studies, 50, 305–333.Google Scholar
  23. Carter, R., Mendis, K. N., & Roberts, D. (2000). Spatial targeting of interventions against malaria. Bulletin of the World Health Organization, 78(12), 1401–1411.Google Scholar
  24. Casetti, E. (1972). Generating models by the expansion method: Application to geographic research. Geographical Analysis, 4, 81–91.CrossRefGoogle Scholar
  25. Casetti, E. (1986). The dual expansion method: An application for evaluating the effects of population growth on development. IEEE Transactions on Systems, Man and Cybernetics, 16(1), 29–39.Google Scholar
  26. Castro, M. C., Monte-Mór, R. L., Sawyer, D. O., & Singer, B. H. (2006). Malaria risk on the Amazon Frontier. Proceedings of the National Academy of Sciences, 103(7), 2452–2457.Google Scholar
  27. Castro, M. C., Sawyer, D. O., & Singer, B. H. (2006). Spatial patterns of malaria in the Amazon: Implications for surveillance and targeted interventions. Health & Place, 13, 368–380.Google Scholar
  28. Chaix, B., Merlo, J., & Chauvin, P. (2005). Comparison of a spatial approach with the multilevel approach for investigating place effects on health: The example of healthcare utilization in France. Journal of Epidemiology and Community Health, 59, 517–526.Google Scholar
  29. Chaix, B., Merlo, J., Subramanian, S. V., Lynch, J., & Chauvin, P. (2005). Comparison of a spatial perspective with the multilevel analytic approach in neighborhood studies: The case of mental and behavioral disorders due to psychoactive substance use in Malmö, Sweden, 2001. American Journal of Epidemiology, 162(2), 171–182.Google Scholar
  30. Christakos, G., & Hristopulos, D. T. (1998). Spatiotemporal environmental health modelling: A tractatus stochasticus. Boston MA: Kluwer Academic Publishers.Google Scholar
  31. Christakos, G., & Olea, R. A. (2005). New space-time perspectives on the propagation characteristics of the Black Death epidemic and its relation to bubonic plague. Stochastic Environmental Research and Risk Assessment, 19, 307–314.Google Scholar
  32. Coale, A. J., & Watkins, S. C. (1986). The decline of fertility in Europe: The revised proceedings of a conference on the Princeton European Fertility Project. Princeton NJ: Princeton University Press.Google Scholar
  33. Congdon, P. (2003). Modelling spatially varying impacts of socioeconomic predictors on mortality outcomes. Journal of Geographical Systems, 5, 161–184.Google Scholar
  34. Cossman, R. E., Cossman, J. S., Jackson, R., & Cosby, A. (2003). Mapping high or low mortality places across time in the United States: A research note on a health visualization and analysis project. Health & Place, 9, 361–369.Google Scholar
  35. Cressie, N. (1993). Statistics for spatial data. New York: J. Wiley.Google Scholar
  36. Crimmins, E. M. (1993). Demography: The past 30 years, the present, and the future. Demography, 30(4), 579–591.Google Scholar
  37. Deutsch, C. V., & Journel, A. G. (1992). GSLIB: Geostatistical software library and user’s guide. New York: Oxford University Press.Google Scholar
  38. Dorigo, G., & Tobler, W. (1983). Push-pull migration laws. Annals of the Association of American Geographers, 73(1), 1–17.Google Scholar
  39. Easterlin, R. A. (1987). Birth and fortune: The impact of numbers on personal welfare. Chicago IL: University of Chicago Press.Google Scholar
  40. El Ghordaf, J., Hbid, M. L., & Arino, O. (2004). A mathematical study of a two-regional population growth model. Comptes Rendus Biologies, 327(11), 977–982.Google Scholar
  41. Elliott, P., Wakefield, J. C., Best, N. G., & Briggs, D. J. (2000). Spatial epidemiology: Methods and applications. New York: Oxford University Press.Google Scholar
  42. Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., & Davis, E. R. (1997). Mapping city lights with nighttime data from the DMSP operational linescan system. Photogrammetric Engineering and Remote Sensing, 63(6), 727–734.Google Scholar
  43. Elvidge, C. D., Imhoff, M. L., Baugh, K. E., Hobson, V. R., Nelson, I., Safran, J., Dietz, J. B., & Tuttle, B. T. (2001). Nighttime lights of the world: 1994–95. ISPRS Journal of Photogrammetry and Remote Sensing, 56, 81–99.Google Scholar
  44. Entwisle, B., & Gutmann, M. P. (2001). Spatial demography. DBSB 2001 Long-Range Planning Workshop. Demographic and Behavioral Sciences Branch (DSBS), National Institute of Child Health & Human Development [NICHD]. Retrieved June 2, 2006, from: http://www.nichd.nih.gov/about/cpr/dbs/sp/entwisle_gutmann.htm.
  45. Entwisle, B., Rindfuss, R. R., Walsh, S. J., Evans, T. P., & Curran, S. R. (1997). Geographic information systems, spatial network analysis, and contraceptive choice. Demography, 34(2), 171–187.Google Scholar
  46. Dykstra, P. A., & van Wissen, L. J. G (1999). Introduction: The life course approach as an interdisciplinary framework for population studies. In L. J. G van Wissen & P. A. Dykstra (Eds.), Population issues: An interdisciplinary focus (pp. 1–5). New York: Kluwer Academic/Plenum.Google Scholar
  47. Flowerdew, R., & Lovett, A. (1988). Fitting constrained Poisson regression models to interurban migration flows. Geographical Analysis, 20(4), 297–307.CrossRefGoogle Scholar
  48. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2000). Quantitative geography: Perspectives on spatial data analysis. Thousand Oaks CA: Sage Publications.Google Scholar
  49. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. Hoboken NJ: Wiley.Google Scholar
  50. Fox, J., Suryanata, K., & Hershock, P. (2005). Mapping communities: Ethics, values, practices. Honolulu HI: East-West Center.Google Scholar
  51. Frankhauser, P. (1998). The fractal approach. A new tool for the spatial analysis of urban agglomerations. Population, English selection: New methodological approaches in the social sciences, 10(1), 205–240.Google Scholar
  52. Freedman, R., & Takeshita, J. Y. (1969). Family planning in Taiwan: An experiment in social change. Princeton NJ: Princeton University Press.Google Scholar
  53. Fuchs, R. J. (1984). Government policy and population distribution. In J. I. Clarke (Ed.), Geography and population: Approaches and applications (1st ed., pp. 127–137). New York: Pergamon Press.Google Scholar
  54. Fuchs, R. J., & Demko, G. J. (1983). Rethinking population distribution policies. Population Research and Policy Review, 2(2), 161–187.Google Scholar
  55. Fuller, G. (1974). On the spatial diffusion of fertility decline: The distance-to-clinic variable in a Chilean community. Economic Geography, 50(4), 324–332.Google Scholar
  56. Getis, A. (1995). Spatial filtering in a regression framework: Examples using data on urban crime, regional inequality, government expenditures. In L. Anselin, & R. Florax (Eds.), New directions in spatial econometrics (pp. 191–203). Berlin, Germany: Springer.Google Scholar
  57. Gobalet, J. G., & Thomas, R. K. (1996). Demographic data and geographic information systems for decision-making: The case of public health. Population Research and Policy Review, 15(5–6), 537–548.Google Scholar
  58. Goodchild, M. F., Anselin, L., Appelbaum, R. P., & Harthorn, B. H. (2000). Toward spatially integrated social science. International Regional Science Review, 23(2), 139–159.Google Scholar
  59. Goodchild, M. F., & Janelle, D. G. (2004). Spatially integrated social science. New York: Oxford University Press.Google Scholar
  60. Greenhalgh, S. (1996). The social construction of population science: An intellectual, institutional, and political history of twentieth-century demography. Comparative Studies in Society and History, 38(1), 26–66.CrossRefGoogle Scholar
  61. Griffith, D. A., Layne, L. J., Ord, J. K., & Sone, A. (1999). A casebook for spatial statistical data analysis: A compilation of analyses of different thematic data sets. New York: Oxford University Press.Google Scholar
  62. Guilmoto, C. Z., & Rajan, S. I. (2001). Spatial patterns of fertility transition in Indian districts. Population and Development Review, 27(4), 713–738.Google Scholar
  63. Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.Google Scholar
  64. Hauser, P. M., & Duncan, O. D. (1959). The study of population: An inventory and appraisal. Chicago IL: University of Chicago Press.Google Scholar
  65. Hill, N. D. (1998). Creating social borders from the WASAP data sets. West Africa spatial analysis prototype exploratory analysis (WASAP). Calverton MD: Macro International, Inc.Google Scholar
  66. Hobbs, F., & Stoops, N. (2002). Demographic trends in the 20th century. Washington DC, U.S. Census Bureau, Special Reports, Series CENSR-4.Google Scholar
  67. Hudson, J. C. (1970). Elementary models for population growth and distribution analysis. Demography, 7(3), 361–368.Google Scholar
  68. Imhoff, M. L., Lawrence, W. T., Stutzer, D. C., & Elvidge, C. D. (1997). A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sensing of Environment, 61, 361–370.Google Scholar
  69. James, W. L., Cossman, J. S., Cossman, R. E., Campbell, C., & Blanchard, T. (2004). A brief visual primer for the mapping of mortality trend data. International Journal of Health Geographics, 3(7). Retrieved June 1, 2006, from http://www.ij-healthgeographics.com/content/3/1/7.
  70. Johnson, K. M., Voss, P. R., Hammer, R. B., Fuguitt, G. V., & McNiven, S. (2005). Temporal and spatial variation in age-specific net migration in the United States. Demography, 42(4), 791–812.Google Scholar
  71. Keyfitz, N. (1980). Population appearances and demographic reality. Population and Development Review, 6(1), 47–64.Google Scholar
  72. Keyfitz, N. (1993). Thirty years of demography and Demography. Demography, 30(4), 533–549.Google Scholar
  73. Kitagawa, E. M., & Hauser, P. M. (1973). Differential mortality in the United States: A study in socioeconomic epidemiology. Cambridge MA: Harvard University Press.Google Scholar
  74. Knox, G. (1964). The detection of space-time interactions. Applied Statistics, 13, 25–29.Google Scholar
  75. Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26(6), 1481–1496.Google Scholar
  76. Kwan, M.-P., Casas, I., & Schmitz, B. C. (2004). Protection of geoprivacy and accuracy of spatial information: How effective are geographic masks? Cartographica, 39, 15–28.Google Scholar
  77. Land, K. C., & Deane, G. (1992). On the large-sample estimation of regression models with spatial- or network-effects terms: A two-stage least squares approach. In P. V. Marsden (Ed.), Sociological methodology (pp. 221–248). Washington DC: American Sociological Association.Google Scholar
  78. Lawson, A. (1999). Disease mapping and risk assessment for public health. New York: Wiley.Google Scholar
  79. Lawson, A. (2005). Spatial and spatio-temporal disease analysis. In A. Lawson, & K. Kleinman (Eds.), Spatial and syndromic surveillance for public health (pp. 55–76). Hoboken NJ: Wiley.Google Scholar
  80. Lawson, A., Browne, W. J., & Vidal Rodeiro, C. L. (2003). Disease mapping with WinBUGS and MLwiN. Chichester, West Sussex, England: J. Wiley.Google Scholar
  81. Lawson, A., & Kleinman, K. (2005). Spatial and syndromic surveillance for public health. Hoboken NJ: Wiley.Google Scholar
  82. Lawson, A., & Williams, F. L. R (2000). Spatial competing risk models in disease mapping. Statistics in Medicine, 19, 2451–2467.Google Scholar
  83. Leal, M. d. C., & Szwarcwald, C. L. (1997). Characteristics of neonatal mortality in the State of Rio de Janeiro, Brazil, in the 1980s: A spatio-temporal analysis. Revista de Saúde Pública, 31(5), 457–465.Google Scholar
  84. Ledent, J., & Rogers, A. (1987). Spatial dynamics of populations with changing birth, death, and migration rates: A generalization of multiregional stable population theory. Environment and Planning A, 19, 819–828.Google Scholar
  85. Lesthaeghe, R., & Neels, K. (2002). From the first to the second demographic transition: An interpretation of the spatial continuity of demographic innovation in France, Belgium and Switzerland. European Journal of Population, 18, 325–360.Google Scholar
  86. Levine, N. (2006). Crime mapping and the Crimestat program. Geographical Analysis, 38(1), 41–56.Google Scholar
  87. Li, W. L. (1973). Temporal and spatial analysis of fertility decline in Taiwan. Population Studies, 27(1), 97–104.Google Scholar
  88. Lin, G. (1999). Assessing changes in interstate migration patterns of the United States elderly population, 1965–1990. International Journal of Population Geography, 5, 411–424.Google Scholar
  89. Lin, G., & Zimmer, Z. (2002). A geographical analysis of spatial differentials in mobility and self-care limitations among older Americans. International Journal of Population Geography, 8, 395–408.Google Scholar
  90. Loftin, C., & Ward, S. K. (1983). A spatial autocorrelation model of the effects of population density on fertilty. American Sociological Review, 48, 121–128.Google Scholar
  91. Logan, J. R., & Zhang, W. (2004). Identifying ethnic neighborhoods with census data: Group concentration and spatial clustering. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science (pp. 113–126). New York: Oxford University Press.Google Scholar
  92. Lorimer, F. (1959). The development of demography. In P. M. Hauser & O. D. Duncan (Eds.), The study of population: An inventory and appraisal (pp. 124–179). Chicago IL: University of Chicago Press.Google Scholar
  93. Lotka, A. J. (1936). The geographic distribution of intrinsic natural increase in the United States, and the examination of the relation between several measures of net reproductivity. Journal of the American Statistical Association, 31(194), 273–294.Google Scholar
  94. Mouw, T. (2001). Spatial demography. DBSB 2001 Long-Range Planning Workshop. Demographic and Behavioral Sciences Branch (DSBS), National Institute of Child Health & Human Development (NICHD). Retrieved June 2, 2006, from: http://www.nichd.nih.gov/about/cpr/dbs/sp/entwisle_gutmann.htm.
  95. Mueser, P. (1989). The spatial structure of migration: An analysis of flows between states in the USA over three decades. Regional Studies, 23(3), 185–2000.Google Scholar
  96. Namboodiri, K. (1988). Ecological demography: Its place in sociology. American Sociological Review, 53(4), 619–633.Google Scholar
  97. National Academies Press (2006). Learning to think spatially: GIS as a support system in the K-12 curriculum. Washington DC: National Academies Press.Google Scholar
  98. National Institute of Child Health & Human Development [NICHD] (2002). Demographic and Behavioral Sciences Branch, Goals and Opportunities: 2002–2006. Demographic and Behavioral Sciences Branch, Center for Population Research, National Institute of Child Health and Human Development. Retrieved June 1, 2006, from http://www.nichd.nih.gov/publications/pubs/dbsb_plan.htm.
  99. Nordhaus, W. D. (2006). Geography and macroeconomics: New data and new findings. Proceedings of the National Academy of Sciences, 103(10), 3510–3517.Google Scholar
  100. Okabe, A., Okunuki, K., & Shiode, S. (2006). SANET: A toolbox for spatial analysis on a network. Geographical Analysis, 38(1), 57–66.Google Scholar
  101. Openshaw, S. (1984). The modifiable areal unit problem. Norwick, England: GeoBooks.Google Scholar
  102. Openshaw, S. (1991). Developing appropriate spatial analysis methods for GIS. In P. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical information systems: Principles and applications (pp. 389–402). London, England: Longman.Google Scholar
  103. Openshaw, S., & Rao, L. (1995). Algorithms for reengineering 1991 Census geography. Environment and Planning A, 27, 425–446.Google Scholar
  104. Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27(4), 286–306.CrossRefGoogle Scholar
  105. Pandit, K., & Bagchi-Sen, S. (1993). The spatial dynamics of U.S. fertility, 1970–1990. Growth and Change, 24, 229–246.Google Scholar
  106. Pebley, A. R. (1998). Demography and the environment. Demography, 35(4), 377–389.Google Scholar
  107. Pebley, A. R., & Sastry, N. (2003). Neighborhoods, poverty and children’s well-being: A review. Labor and Population Program, Working Paper Series 03-04. Los Angeles CA: RAND.Google Scholar
  108. Pickle, L. W. (2000). Exploring spatio-temporal patterns of mortality using mixed effects models. Statistics in Medicine, 19, 2251–2263.Google Scholar
  109. Pickle, L. W., Mungiole, M., Jones, G. K., & White, A. A. (1996). Atlas of United States mortality. Hyattsville MD: National Center for Health Statistics, Centers for Disease Control and Prevention, U.S. Dept. of Health and Human Services.Google Scholar
  110. Plane, D. A. (1992). Age-composition change and the geographical dynamics of interregional migration in the U.S. Annals of the Association of American Geographers, 82(1), 64–85.Google Scholar
  111. Plane, D. A., Henrie, C. J., & Perry, M. J. (2005). Migration up and down the urban hierarchy and across the life course. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15313–15318.Google Scholar
  112. Plane, D. A., & Mulligan, G. F. (1997). Measuring spatial focusing in a migration system. Demography, 34(2), 251–262.Google Scholar
  113. Plane, D. A., & Rogerson, P. A. (1991). Tracking the baby boom, the baby bust, and the echo generations: How the age composition regulates U.S. migration. Professional Geographer, 43(4), 416–430.Google Scholar
  114. Pollé, V. F. L (1984). Population estimation from aerial photos for non-homogeneous urban residential areas. ITC Journal, 2, 116–122.Google Scholar
  115. Pressat, R. (1972). Demographic analysis: Methods, results, applications. Chicago IL: Aldine-Atherton.Google Scholar
  116. Preston, S. H. (1993). The contours of demography: Estimates and projections. Demography, 30(4), 593–606.Google Scholar
  117. Preston, S. H., & Coale, A. J. (1982). Age structure, growth, attrition, and accession: A new synthesis. Population Index, 48(2), 217–259.Google Scholar
  118. Pryor, R. J. (1984). Methodological problems in population geography. In J. I. Clarke (Ed.), Geography and population: Approaches and applications (pp. 25–34). New York: Pergamon Press.Google Scholar
  119. Rees, P.H, & Wilson, A. G. (1977). Spatial population analysis. London: E. Arnold.Google Scholar
  120. Rey, S. J., & Anselin, L. (2006). Recent advances in software for spatial analysis in the social sciences. Geographical Analysis, 38(1), 1–4.Google Scholar
  121. Rey, S. J., & Janikas, M. V. (2006). STARS: Space-time analysis of regional systems. Geographical Analysis, 38(1), 67–86.Google Scholar
  122. Rindfuss, R. R., Prasartkul, P., Walsh, S. J., Entwisle, B., Sawangdee, Y., & Vogler, J. B. (2003). Household-parcel linkages in Nang Rong, Thailand: Challenges of large samples. In J. Fox, R. R. Rindfuss, S. J. Walsh, & V. Mishra (Eds.), People and the environment: Approaches for linking household and community surveys to remote sensing and GIS (pp. 131–172). Boston MA: Kluwer Academic Publishers.Google Scholar
  123. Rindfuss, R. R., Walsh, S. J., Mishra, V., Fox, J., & Dolcemascolo, G. P. (2003). Linking household and remotely sensed data. In J. Fox, R. R. Rindfuss, S. J. Walsh, & V. Mishra (Eds.), People and the environment: Approaches for linking household and community surveys to remote sensing and GIS (pp. 1–29). Boston MA: Kluwer Academic Publishers.Google Scholar
  124. Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15, 351–357.Google Scholar
  125. Rogers, A. (1966). The multiregional matrix growth operator and the stable interregional age structure. Demography, 3(2), 537–544.Google Scholar
  126. Rogers, A. (1975). Introduction to multiregional mathematical demography. New York: Wiley.Google Scholar
  127. Rogers, A. (1992). Heterogeneity, spatial population dynamics, and the migration rate. Environment and Planning A, 24, 775–791.Google Scholar
  128. Rogers, A. (1995). Multiregional demography: Principles, methods and extensions. New York: Wiley.Google Scholar
  129. Rogers, A., & Raymer, J. (2001). Immigration and the regional demographics of the elderly population in the United States. Journal of Gerontology: Social Sciences, 56B(1), S44–S55.Google Scholar
  130. Rogers, A., & Sweeney, S. (1998). Measuring the spatial focus of migration patterns. Professional Geographer, 50(2), 232–242.Google Scholar
  131. Rogers, A., Willekens, F., Little, J., & Raymer, J. (2002). Describing migration spatial structure. Papers in Regional Science, 81, 29–48.Google Scholar
  132. Rogers, A., & Woodward, J. A. (1991). Assessing state population projections with transparent multiregional demographic models. Population Research and Policy Review, 10, 1–26.Google Scholar
  133. Rutstein, S. O. (2000). Cluster typing procedures. West Africa spatial analysis prototype exploratory analysis (WASAP). Calverton MD: Macro International, Inc.Google Scholar
  134. Ryder, N. B. (1964). Notes on the concept of a population. American Journal of Sociology, 69(5), 447–463.Google Scholar
  135. Samet, H., & Webber, R. E. (2006). Extending the SAND spatial database system for the visualization of three-dimensional scientific data. Geographical Analysis, 38(1), 87–101.Google Scholar
  136. Santos, S. M., & Noronha, C. P. (2001). Mortality spatial patterns and socioeconomic differences in the city of Rio de Janeiro. Cadernos de Saúde Pública, 17(5), 1099–1110.Google Scholar
  137. Sastry, N., Pebley, A. R., & Zonta, M. (2002). Neighborhood definitions and the spatial dimension of daily life in Los Angeles. Labor and Population Program, Working Paper Series 03-02. Los Angeles CA: RAND.Google Scholar
  138. Shelton, N. J., Birkin, M. H., & Dorling, D. (2006). Where not to live: A geo-demographic classification of mortality for England and the Wales, 1981–2000. Health & Place, 12, 557–569.Google Scholar
  139. Skinner, G. W., Henderson, M., & Jianhua, Y. (2000). China’s fertility transition through regional space. Social Science History, 24(3), 613–652.Google Scholar
  140. Snow, J. (1855). On the mode of communication of cholera. London, England: John Churchill.Google Scholar
  141. Sutton, P. C., Roberts, D., Elvidge, C. D., & Baugh, K. E. (2001). Census from heaven: An estimate of the global human population using night-time satellite imagery. International Journal of Remote Sensing, 22(16), 3061–3076.Google Scholar
  142. Thomson, M. C., Doblas-Reyes, F. J., Mason, S. J., Hagedorn, R., Connor, S. J., Phindela, T., Morse, A. P., & Palmer, T. N. (2006). Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature, 439, 576–579.Google Scholar
  143. Tobler, W. (1981). A model of geographical movement. Geographical Analysis, 13(1), 1–20.CrossRefGoogle Scholar
  144. Tobler, W., Deichmann, U., Gottsegen, J., & Maloy, K. (1997). World population in a grid of spherical quadrilaterals. International Journal of Population Geography, 3, 203–225.Google Scholar
  145. Tolnay, S. E. (1995). The spatial diffusion of fertility: A cross-sectional analysis of counties in the American South, 1940. American Sociological Review, 60, 299–308.Google Scholar
  146. Trewartha, G. T. (1953). A case for population geography. Annals of the Association of American Geographers, XLIII(2), 71–97.Google Scholar
  147. United Nations (1980). World population trends and monitoring report, vol. II, population policies. New York: United Nations, Population Division.Google Scholar
  148. United Nations (2000). Replacement migration: Is it a solution to declining and aging populations? New York, Population Division, Department of Economic and Social Affairs, United Nations Secretariat.Google Scholar
  149. VanWey, L. K., Rindfuss, R. R., Gutmann, M. P., Entwisle, B., & Balk, D. L. (2005). Confidentiality and spatially explicit data: Concerns and challenges. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15337–15342.Google Scholar
  150. Voss, P. R. (2007). Demography as a spatial social science. Population Research and Policy Review, 26(5–6). doi:10.1007/s11113-007-9047-4.
  151. Wachter, K. W. (2005). Spatial demography. Proceedings of the National Academy of Sciences, 102(43), 15299–15300.Google Scholar
  152. Waldorf, B., & Franklin, R. (2002). Spatial dimensions of the Easterlin hypothesis: Fertility variation in Italy. Journal of Regional Science, 42(2), 549–578.Google Scholar
  153. Webster, C. J. (1996). Population and dwelling unit estimates from space. Third World Planning Review, 18(2), 155–176.Google Scholar
  154. Weeks, J. R. (2004). The role of spatial analysis in demographic research. In M. F. Goodchild, & D. G. Janelle (Eds.), Spatially integrated social science (pp. 381–399). New York: Oxford University Press.Google Scholar
  155. Weeks, J. R., Getis, A., Hill, A. G., Gadalla, M. S., & Rashed, T. (2004). The fertility transition in Egypt: Intraurban patterns in Cairo. Annals of the Association of American Geographers, 94(1), 74–93.Google Scholar
  156. Willekens, F., & Baydar, N. (1986). Forecasting place-to-place migration with generalized linear models. In R. Woods, & P. H. Rees (Eds.), Population structures and models: Developments in spatial demography (pp. 203–244). Boston MA: G. Allen and Unwin.Google Scholar
  157. Womble, W. G. (1951). Differential systematics. Science, 114, 315–322.Google Scholar
  158. Woods, R. (1984). Spatial demography. In J. I. Clarke (Ed.), Geography and population: Approaches and applications (pp. 43–50). New York: Pergamon Press.Google Scholar
  159. Woods, R. (2000). The demography of Victorian England and Wales. New York: Cambridge University Press.Google Scholar
  160. Woods, R., & Rees, P. H. (1986a). Population structures and models: Developments in spatial demography. Boston MA: G. Allen and Unwin.Google Scholar
  161. Woods, R., & Rees, P. H. (1986b). Spatial demography: Themes, issues and progress. In R. Woods & P. H. Rees (Eds.), Population structures and models: Developments in spatial demography (pp. 1–3). Boston MA: G. Allen and Unwin.Google Scholar
  162. Woods, R., & Shelton, N. (1997). An atlas of Victorian mortality. Liverpool, England: Liverpool University Press.Google Scholar
  163. Xiao, N., & Armstrong, M. P. (2006). ChoroWare: A software toolkit for choropleth map classification. Geographical Analysis, 38(1), 102–121.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Harvard School of Public Health, Harvard UniversityBostonUSA

Personalised recommendations