Skip to main content
Log in

Climate variability and health in extremely vulnerable communities: investigating variations in surface water conditions and food security in the West African Sahel

  • Original Paper
  • Published:
Population and Environment Aims and scope Submit manuscript

A Correction to this article was published on 07 April 2021

This article has been updated

Abstract

In this project we consider the ways that different livelihood strategies impact the climate-health linkage. Specifically, we build on knowledge of livestock mobility in the Sahel and use remotely sensed-based measures of waterholes with health survey data to investigate the linkages between child health outcomes related to food security. We focus on the landscape characteristics relevant to limitedly studied, but highly climate-vulnerable populations, pastoralists and agro-pastoralists in the Sahel. We combine remotely sensed-based data on surface waterholes and spatially referenced health survey data and use flexible regression modeling techniques to uncover the quantitative relationship between waterhole depth and a child’s height-for-age z-score (HAZ). The results suggest that the water depth level of nearby waterholes does indeed impact a child’s HAZ, even after accounting for other environmental factors. This relationship is impacted, however, by the livelihood practices of the area as well as by the source of household drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Notes

  1. Developed recently by USGS scientists in collaboration with Climate Hazards Center at the University of California, Santa Barbara.

  2. e.g. Global Precipitation Climatology Centre, Climate Prediction Center’s Unified precipitation data set, and University of Delaware’s precipitation data.

References

  • Adriansen, H. K., & Nielsen, T. T. (2005). The geography of pastoral mobility: a spatio-temporal analysis of GPS data from Sahelian Senegal. GeoJournal, 64(3), 177–188.

    Google Scholar 

  • Adriansen, H. K. (2008). Understanding pastoral mobility: the case of Senegalese Fulani. Geographical Journal, 174(3), 207–222.

    Article  Google Scholar 

  • Angassa, A., & Oba, G. (2013). Cattle herd vulnerability to rainfall variability: responses to two management scenarios in southern Ethiopia. Tropical Animal Health and Production, 45(3), 715–721.

    Article  Google Scholar 

  • Bakhtsiyarava, M., Grace, K., & Nawrotzki, R. J. (2018). Climate, birth weight, and agricultural livelihoods in Kenya and Mali. American Journal of Public Health, 108(S2), S144–S150.

    Article  Google Scholar 

  • Balk, D., Storeygard, A., Levy, M., Gaskell, J., Sharma, M., & Flor, R. (2005). Child hunger in the developing world: an analysis of environmental and social correlates. Food Policy, 30(5–6), 584–611.

    Article  Google Scholar 

  • Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., de Onis, M., Ezzati, M., et al. (2008). Maternal and child undernutrition: global and regional exposures and health consequences. The Lancet, 371(9608), 243–260.

    Article  Google Scholar 

  • Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., De Onis, M., ... & Maternal and Child Nutrition Study Group. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The lancet, 382(9890), 427–451.

    Article  Google Scholar 

  • Brown, M. E., Grace, K., Shively, G., Johnson, K. B., & Carroll, M. (2014). Using satellite remote sensing and household survey data to assess human health and nutrition response to environmental change. Population and Environment, 36(1), 48–72.

    Article  Google Scholar 

  • Cooper, M. W., Brown, M. E., Hochrainer-Stigler, S., Pflug, G., McCallum, I., Fritz, S., & Zvoleff, A. (2019). Mapping the effects of drought on child stunting. Proceedings of the National Academy of Sciences, 116(35), 17219–17224.

    Article  Google Scholar 

  • Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. C., et al. (2003). Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research, 108(D22), 8842.

    Google Scholar 

  • Davenport, F., Dorélien, A., & Grace, K. (2020). Investigating the linkages between pregnancy outcomes and climate in sub-Saharan Africa. Population and Environment, pp.1–25.

  • Davenport, F., Grace, K., Funk, C., & Shukla, S. (2017). Child health outcomes in sub-Saharan Africa: a comparison of changes in climate and socio-economic factors. Global Environmental Change, 46, 72–87.

    Article  Google Scholar 

  • Davenport, F. M., Harrison, L., Shukla, S., Husak, G., Funk, C., & McNally, A. (2019). Using out-of-sample yield forecast experiments to evaluate which earth observation products best indicate end of season maize yields. Environmental Research Letters, 14(12), 124095.

    Article  Google Scholar 

  • Ellis, J. E., & Swift, D. M. (1988). Stability of African pastoral ecosystems: alternate paradigms and implications for development.". Journal of Range Management Archives, 41(6), 450–459.

    Article  Google Scholar 

  • FAO. (2001). Pastoralism in the new millennium. Animal Production and Health Paper No. 150. Rome, Italy. http://www.fao.org/DOCREP/005/y2647e/y2647e00.htm.

  • FAO. (1996). World Food Summit: Rome Declaration on World Food Security. Rome: Food and Agriculture Organization.

    Google Scholar 

  • FAO. (2018). Pastoralism in Africa’s drylands. Rome. 52 pp. Licence: CC BY-NC-SA 3.0 IGO.

  • FEWS NET. (2014). Livelihood zone reports for Burkina Faso, Mali, and Senegals (accessed at http://www.fews.net on 25 July 2015).

  • Fratkin, El. (2001). East African pastoralism in transition: Maasai, Boran, and Rendille cases. African Studies Review, pp. 1–25.

  • Funk C., Michaelsen, J., & Marshall, M. (2012). Mapping recent decadal climate variations in Eastern Africa and the Sahel, in Remote sensing of drought: innovative monitoring approaches (eds Wardlow B., Anderson M. & Verdin J.).

  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., et al. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21.

    Article  Google Scholar 

  • Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., & Husak, G. (2015). A global satellite assisted precipitation climatology. Earth System Science Data Discussions8(1).

  • Grace, K., Nagle, N. N., Burgert-Brucker, C. R., Rutzick, S., Van Riper, D. C., Dontamsetti, T., & Croft, T. (2019). Integrating environmental context into DHS analysis while protecting participant confidentiality: a new remote sensing method. Population and Development Review, 45(1), 197.

    Article  Google Scholar 

  • Homewood, K. (2008). Ecology of African Pastoralist Societies. James Currey: Ohio University Press; Unisa Press.

    Google Scholar 

  • Homewood, K. (1994). Pastoralists, environment and development in East African rangelands. Environment and population change, 311–323.

  • Husak, G., & Grace, K. (2016). In search of a global model of cultivation: using remote sensing to examine the characteristics and constraints of agricultural production in the developing world. Food Security, 8(1), 167–177.

    Article  Google Scholar 

  • Isen, A., Rossin-Slater, M., & Walker, R. (2017). Relationship between season of birth, temperature exposure, and later life wellbeing. Proceedings of the National Academy of Sciences, 114(51), 13447–13452.

    Article  Google Scholar 

  • Jones, A. D., Ngure, F. M., Pelto, G., & Young, S. L. (2013). What are we assessing when we measure food security? A compendium and review of current metrics. Advances in Nutrition, 4(5), 481–505.

    Article  Google Scholar 

  • Jose, V. R. R., & Winkler, R. L. (2008). Simple robust averages of forecasts: Some empirical results. International Journal of Forecasting, 24(1), 163–169.

    Article  Google Scholar 

  • Kanter, R., Walls, H. L., Tak, M., Roberts, F., & Waage, J. (2015). A conceptual framework for understanding the impacts of agriculture and food system policies on nutrition and health. Food Security, 7(4), 767–777.

    Article  Google Scholar 

  • Makridakis, S. (1983). Averages of Forecasts: Some Empirical Results. Management Science, 29(9), 987–996.

    Article  Google Scholar 

  • Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting methods and applications. John Wiley & Sons.

  • Martin, R., Müller, B., Linstädter, A., & Frank, K. (2014). How much climate change can pastoral livelihoods tolerate? Modelling rangeland use and evaluating risk. Global Environmental Change, 24, 183–192.

    Article  Google Scholar 

  • Matthews, S. A., & Yang, T. C. (2013). Spatial polygamy and contextual exposures (spaces) promoting activity space approaches in research on place and health. American Behavioral Scientist, 57(8), 1057–1081.

    Article  Google Scholar 

  • Mukuria, A., Macro, O. R. C., Cushing, J., & Sangha, J. (2005). Nutritional status of children: results from the demographic and health surveys 1994–2001.

  • New, M., Hulme, M., & Jones, P. (2000). Representing twentieth-century space–time climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. Journal of Climate, 13(13), pp.2217–2238.

  • Pelletier, D. L., Frongillo, E. A., Jr., Schroeder, D. G., & Habicht, J. P. (1995). The effects of malnutrition on child mortality in developing countries. Bulletin of the World Health Organization, 73(4), 443.

    Google Scholar 

  • Pelletier, D. L. (1994). The potentiating effects of malnutrition on child mortality: epidemiologic evidence and policy implications. Nutrition reviews, 52(12), 409–415.

    Article  Google Scholar 

  • Perchoux, C., Chaix, B., Cummins, S., & Kestens, Y. (2013). Conceptualization and measurement of environmental exposure in epidemiology: accounting for activity space related to daily mobility. Health & Place, 21, 86–93.

    Article  Google Scholar 

  • Perez-Heydrich, C., Warren, J. L., Burgert, C. R., & Emch, M. E. (2016). Influence of demographic and health survey point displacements on raster-based analyses. Spatial Demography, 4(2), 135–153.

    Article  Google Scholar 

  • Perez-Heydrich, C., Warren, J. L., Burgert, C. R., & Emch, M. (2013). Guidelines on the use of DHS GPS data. ICF International.

  • Phalkey, R. K., Aranda-Jan, C., Marx, S., Höfle, B., & Sauerborn, R. (2015). Systematic review of current efforts to quantify the impacts of climate change on undernutrition. Proceedings of the National Academy of Sciences, 112(33), E4522–E4529.

    Article  Google Scholar 

  • Randall, S. (2015). Where have all the nomads gone? Fifty years of statistical and demographic invisibilities of African mobile pastoralists. Pastoralism, 5, 22.

    Article  Google Scholar 

  • Randell, H., Gray, C., & Grace, K. (2020). Stunted from the start: Early life weather conditions and child undernutrition in Ethiopia. Social Science & Medicine, 261, 113234.

    Article  Google Scholar 

  • Sadler, K., Kerven, C., Calo, M., Manske, M., & Catley, A. (2010). The fat and the lean: review of production and use of milk by pastoralists. Pastoralism, 1(2), 291–324.

    Google Scholar 

  • Sandford, S. (1983). Management of pastoral development in the Third World. Wiley.

  • Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19(13), 3088–3111.

    Article  Google Scholar 

  • Senay, G. B., Velpuri, N. M., Alemu, H., Pervez, S. M., Asante, K. O., Kariuki, G., et al. (2013). Establishing an operational waterhole monitoring system using satellite data and hydrologic modelling: application in the pastoral regions of East Africa. Pastoralism: Research, Policy and Practice, 3(1), 20.

    Article  Google Scholar 

  • Shell-Duncan, B. (1995). Impact of seasonal variation in food availability and disease stress on the health status of nomadic Turkana children: a longitudinal analysis of morbidity, immunity, and nutritional status. American Journal of Human Biology, 7(3), 339–355.

    Article  Google Scholar 

  • Thébaud, B., & Batterbury, S. (2001). Sahel pastoralists: opportunism, struggle, conflict and negotiation. A case study from eastern Niger. Global environmental change, 11(1), 69–78.

    Article  Google Scholar 

  • Thiede, B. C., & Strube, J. (2020). Climate variability and child nutrition: Findings from sub-Saharan Africa. Global Environmental Change, 65, 102192.

    Article  Google Scholar 

  • Turner, M. D., & Hiernaux, P. (2002). The use of herders’ accounts to map livestock activities across agropastoral landscapes in Semi-Arid Africa. Landscape Ecology, 17(5), 367–385.

    Article  Google Scholar 

  • Turner, M. D., & Schlecht, E. (2019). Livestock mobility in sub-Saharan Africa: a critical review. Pastoralism, 9(1), 13.

    Article  Google Scholar 

  • UNICEF. (2010). UNICEF conceptual framework. Retrieved 07/14, 2014 from http://www.unicef.org/nutrition/training/2.5/4.html.

  • UNDP. (2019). Human Development Report 2019. Beyond income, beyond averages, beyond today: inequalities in human development in the 21st century. New York. http://hdr.undp.org/en/content/human-development-report-2019.

  • Van den Bossche, P., & Coetzer, J. A. (2008). Climate change and animal health in Africa. Revue scientifique et technique (International Office of Epizootics), 27(2), 551–562.

    Google Scholar 

  • Velpuri, N. M., Senay, G. B., & Asante, K. O. (2012). A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data. Hydrology and Earth System Sciences, 16(1), 1.

    Article  Google Scholar 

  • Velpuri, N. M., Senay, G. B., Rowland, J., Verdin, J. P., & Alemu, H. (2014). Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET. In Nile River Basin (pp. 69–95). Springer, Cham.

  • Verstraete, M. M., Scholes, R. J., & Smith, M. S. (2009). Climate and desertification: looking at an old problem through new lenses. Frontiers in Ecology and the Environment, 7(8), 421–428.

    Article  Google Scholar 

  • Williams, C. A., & Albertson, J. D. (2006). Dynamical effects of the statistical structure of annual rainfall on dryland vegetation. Global Change Biology, 12(5), 777–792.

    Article  Google Scholar 

  • Wood, S. N. (2017). Generalized additive models: an introduction with R. Chapman and Hall/CRC.

  • Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1), 95–114.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for the valuable feedback provided by Jim Rowland, Gabriel Senay, and Shrad Shukla. This project was supported, in part by SERVIR Applied Science Team (AST) project NASA grant # 80NSSC20K0163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Grace.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article unfortunately contained a mistake. The Acknowledgement section is missing.

Appendix

Appendix

Table 3 Linear regression model results with HAZ as continuous outcome variable
Table 4 Model Quality Comparison
Fig. 6
figure 6

Predicted HAZ values averaged over models [1–4], excluding environmental variables. Shaded area shows 95% prediction intervals averaged across models

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grace, K., Davenport, F. Climate variability and health in extremely vulnerable communities: investigating variations in surface water conditions and food security in the West African Sahel. Popul Environ 42, 553–577 (2021). https://doi.org/10.1007/s11111-021-00375-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11111-021-00375-9

Navigation