Population and Environment

, Volume 35, Issue 3, pp 323–339 | Cite as

A spatial analysis of population dynamics and climate change in Africa: potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide

  • David López-CarrEmail author
  • Narcisa G. Pricope
  • Juliann E. Aukema
  • Marta M. Jankowska
  • Christopher Funk
  • Gregory Husak
  • Joel Michaelsen
Research Brief


We present an integrative measure of exposure and sensitivity components of vulnerability to climatic and demographic change for the African continent in order to identify “hot spots” of high potential population vulnerability. Getis-Ord Gi* spatial clustering analyses reveal statistically significant locations of spatio-temporal precipitation decline coinciding with high population density and increase. Statistically significant areas are evident, particularly across central, southern, and eastern Africa. The highly populated Lake Victoria basin emerges as a particularly salient hot spot. People located in the regions highlighted in this analysis suffer exceptionally high exposure to negative climate change impacts (as populations increase on lands with decreasing rainfall). Results may help inform further hot spot mapping and related research on demographic vulnerabilities to climate change. Results may also inform more suitable geographical targeting of policy interventions across the continent.


Climate change Population Vulnerability Hazards Africa Spatial modeling 



This work was supported through USGS cooperative agreement #G09AC000001 “Monitoring and Forecasting Climate, Water and Land Use for Food Production in the Developing World,” with funding from the NASA Applied Sciences Program, Decisions award #NN10AN26I for “A Land Data Assimilation System for Famine Early Warning,” and SERVIR award #NNH12AU22I for “A Long Time-Series Indicator of Agricultural Drought for the Greater Horn of Africa”; USAID Office of Food for Peace, award #AID-FFP-P-10-00002 for “Famine Early Warning Systems Network Support”; and the USGS Land Change Science Program. The work was also partially supported by a National Oceanic and Atmospheric Administration (NOAA) and Climate Scene Investigators (CSI)—Transitions Program Grant: A Global Standardized Precipitation Index Supporting the US Drought Portal and the Famine Early Warning System Network. We would also like to acknowledge Jim Regetz and Alex Zvoleff for statistical and computing consultation and Shuang Yang for assisting in our hot spot analysis literature review.


  1. An, L., & López-Carr, D. (2012). Modeling coupled human-natural systems: Research directions. Ecological Modeling, 229, 1–4.CrossRefGoogle Scholar
  2. Antwi-Agyei, P., Fraser, E. D. G., Dougill, A. J., Stringer, L. C., & Simelton, E. (2012). Mapping the vulnerability of crop production to drought in ghana using rainfall, yield and socioeconomic data. Applied Geography, 32, 324–334. doi: 10.1016/j.apgeog.2011.06.010.CrossRefGoogle Scholar
  3. Barbieri, A. F., Domingues, E., Queiroz, B. L., Ruiz, R. M., Rigotti, J. I., Carvalho, J. A., et al. (2010). Climate change and population migration in Brazil’s Northeast: scenarios for 2025–2050. Population and Environment, 31(5), 344–370.CrossRefGoogle Scholar
  4. Barrios, S., Bertinelli, L., & Stroble, E. (2006). Climatic change and rural-urban migration: The case of sub-Saharan Africa. Journal of Urban Economics, 60(3), 357–371.CrossRefGoogle Scholar
  5. Barrios, S., Bertinelli, L., & Stroble, E. (2010). Trends in rainfall and economic growth in Africa: A neglected cause of the African growth tragedy. Review of Economics and Statistics, 92(2), 350–366.CrossRefGoogle Scholar
  6. Brondizio, E. S., & Moran, E. F. (2008). Human dimensions of climate change: The vulnerability of small farmers in the Amazon. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1803–1809.CrossRefGoogle Scholar
  7. Brown, C., Meeks, R., Huni, K., & Yu, W. (2011). Hydro climate risk to economic growth in sub-Saharan Africa. Climatic Change, 106(4), 621–647.CrossRefGoogle Scholar
  8. Burke, M. B., Lobell, D. B., & Guarino, L. (2009). Shifts in African crop climates by 2050 and the implications for crop improvement and genetic resources conservation. Global Environmental Change, 19(3), 317–325.CrossRefGoogle Scholar
  9. Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A., & Lobell, D. B. (2010). Climate robustly linked to African civil war. PNAS 107(51).Google Scholar
  10. Chaves, L. F., & Koenraadt, C. H. (2010). Climate change and highland malaria: Fresh air for a hot debate. The Quarterly Review of Biology, 85(1), 27–55.CrossRefGoogle Scholar
  11. Christensen, J. H., Hewitson, A., Busuioc, A., Chen, A., Gao, X., Held, R., Jones, R., Kolli, R. K., Kwon, W. K., & Laprise, R. (2007). Regional climate projections. In Climate change: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, pp 849–940. Cambridge: Cambridge University Press.Google Scholar
  12. Collier, P., Conway, G., & Venables, T. (2008). Climate change and Africa. Oxford Review of Economic Policy, 24, 337–353.CrossRefGoogle Scholar
  13. Cooper, P., Dimes, J., Rao, K., Shapiro, B., Shiferaw, B., & Twomlow, S. (2008). Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agriculture, Ecosystems & Environment, 126, 24–35.CrossRefGoogle Scholar
  14. Cutter, S. L., Boruff, B., & Shirley, W. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261.CrossRefGoogle Scholar
  15. de Sherbinin, A. (2013). Climate change hotspots mapping: What have we learned? Climatic Change,. doi: 10.1007/s10584-013-0900-7.Google Scholar
  16. Durack, P. J., Wijffels, S. E., & Matear, R. J. (2012). Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455–458.CrossRefGoogle Scholar
  17. Eakin, H., & Luers, A. L. (2006). Assessing the vulnerability of social-environmental systems. Annual Review of Environment and Resources, 31, 365–394. doi: 10.1146/ Scholar
  18. Fischer, G., Shah, M., Tubiello, F. N., & Van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2067–2083.CrossRefGoogle Scholar
  19. Frank, E., Eakin, H., & López-Carr, D. (2011). Social identity, perception and motivation in adaptation to climate risk in the coffee sector of Chiapas, Mexico. Global Environmental Change, 21(1), 66–76.CrossRefGoogle Scholar
  20. Fung, F., Lopez, A., & New, M. (2011). Water availability in +2 Centigrade and +4C worlds. Phil. Trans. R. Soc. A 369: 1934 99–116.Google Scholar
  21. Funk, C., Michaelsen, J., & Marshall, M. (2012). Mapping recent decadal climate variations in precipitation and temperature across Eastern Africa and the Sahel, Chapter 14. In: Wardlow, B., Anderson, M., Verdin, J. (Eds.), Remote sensing of drought: Innovative monitoring approaches. Taylor and Francis, 25 p.Google Scholar
  22. Funk, C., Michaelson, J., Verdin, J., Artan, G., Husak, G., Senay, G., et al. (2003). The collaborative historical African rainfall model: Description and evaluation. International Journal of Climatology, 23, 47–66.CrossRefGoogle Scholar
  23. Galvin, K. A., Boone, R. B., Smith, N. M., & Lynn, S. J. (2001). Impacts of climate variability on East African pastoralists: Linking social science and remote sensing. Climate Research, 19, 161–172.CrossRefGoogle Scholar
  24. Gbetibouo, G. A., & Ringler, C. (2009). Mapping South African farming sector vulnerability to climate change and variability in demographic trends and future carbon emissions. Proceedings of the National Academy of Sciences (PNAS), 107(41): 17521–17526; doi: 10.1088/1748-9326/5/1/014010 (
  25. Getis, A., & Ord, K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24, 189–206.CrossRefGoogle Scholar
  26. Haile, M. (2005). Weather patterns, food security and humanitarian response in sub-Saharan Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2169–2182.CrossRefGoogle Scholar
  27. Heltberg, R., & Bonch-Osmolovskiy, M. (2011). Mapping vulnerability to climate change. World Bank policy research working paper series, vol 24.Google Scholar
  28. Hoell, A., & Funk, C. (2013). The anomalous circulation associated with the ENSO-related west pacific sea surface temperature gradient. Climate Dynamics (in review).Google Scholar
  29. Hope, K. R. (2009). Climate change and poverty in Africa. International Journal of Sustainable Development and World Ecology, 16, 451–461.CrossRefGoogle Scholar
  30. Husak, G., Michaelsen, Joel, & Funk, Chris. (2007). Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. International Journal of Climatology, 27, 935–944.CrossRefGoogle Scholar
  31. Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters, 7(3).Google Scholar
  32. Kovats, S., & Akhtar, R. (2008). Climate, climate change and human health in Asian cities. Environment and Urbanization, 20(1), 165–175.CrossRefGoogle Scholar
  33. Kuriakose, A., Livia, B., & Bachofen, C. (2009). Assessing vulnerability and adaptive capacity to climate risks: Methods for investigation at local and national levels. Washington, DC: World Bank.Google Scholar
  34. Linard, C., Gilbert, M., Snow, R. W., Noor, A. M., & Tatem, A. J. (2012). Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS ONE, 7(2), e31743.CrossRefGoogle Scholar
  35. López-Carr, D., & Pricope, N. G., Jankowska, M. M., Funk, C., Husak, G., & Michaelson, J. (2012). Mapping population vulnerability to climate change in Africa. Proceedings of the international union for the scientific study of population (IUSSP) international seminar on population dynamics and the human dimensions of climate change. Canberra, Australia.Google Scholar
  36. Luers, A. L. (2005). The surface of vulnerability: An analytical framework for examining environmental change. Global Environmental Change-Human and Policy Dimensions, 15, 214–223.CrossRefGoogle Scholar
  37. Lyon, B., & DeWitt, D. G. (2012). A recent and abrupt decline in the East African long rains. Geophysical Research Letters, 39, 2.CrossRefGoogle Scholar
  38. McLeman, R. (2010). Impacts of population change on vulnerability and the capacity to adapt to climate change and variability: A typology based on lessons from “a hard country”. Population and Environment, 31(5), 286–316.CrossRefGoogle Scholar
  39. Meyerson, F. A. B., Merino, L., & Durand, J. (2007). Migration and environment in the context of globalization. Frontiers in Ecology and the Environment, 5, 182–190.CrossRefGoogle Scholar
  40. Morand, P., Kodio, A., Andrew, N., Sinaba, F., Lemoalle, J., & Béné, C. (2012). Vulnerability and adaptation of African rural populations to hydro-climate change: experience from fishing communities in the Inner Niger Delta (Mali). Climatic Change. doi:  10.1007/s10584-012-0492-7 (
  41. Muller, C., Cramer, W., Hare, W. L., & Lotze-Campen, H. (2011). Climate change risks for African agriculture. PNAS, 108(11), 4313–4315.CrossRefGoogle Scholar
  42. O’Brien, K., Leichenko, R., Kelkar, V., Venema, H., Aandahl, G., Tompkins, H., et al. (2004). Mapping vulnerability to multiple stressors: Climate change and globalization in India. Global Environmental Change, 14(4), 303–313.CrossRefGoogle Scholar
  43. O’Neill, B. C., & Schweizer, V. (2011). Projection and prediction: Mapping the road ahead. Nature Climate Change, 1(7), 352–353.CrossRefGoogle Scholar
  44. Preston, B. L., Yuen, E. J., & Westaway, R. M. (2011). Putting vulnerability to climate change on the map: A review of approaches, benefits, and risks. Sustainability Science, 6(2), 177–202. doi: 10.1007/s11625-011-0129-1.CrossRefGoogle Scholar
  45. Pricope, N. G., Husak, G., Lopez-Carr, D., Funk, C., & Michaelsen, J. (2013). The climate-population nexus in the East African Horn: Emerging degradation trends in rangeland and pastoral livelihood zone. Global Environmental Change, 23, 1525–1541.CrossRefGoogle Scholar
  46. Samson, J., Berteaux, D., McGill, B. J., & Humphries, M. M. (2011). Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. Global Ecology and Biogeography, 20(4), 532–544.CrossRefGoogle Scholar
  47. Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5, 014010.CrossRefGoogle Scholar
  48. Seal, A., & Vasudevan, C. (2011) Climate change and child health. Archives of disease in childhood.Google Scholar
  49. Shea, K. M., & The Committee on Environmental Health. (2007) Global climate change and children’s health. Pediatrics 120:e1359.Google Scholar
  50. Stephenson, J., Newman, K., & Mayhew, S. (2010). Population dynamics and climate change: What are the links? Journal of Public Health, 32(2), 150–156.CrossRefGoogle Scholar
  51. Tatem, A., & Linard, C. (2011). Population mapping of poor countries. Nature, 474, 36.CrossRefGoogle Scholar
  52. Thornton, P. K., Jones, P. G., Ericksen, P. J., & Challinor, A. J. (2011). Agriculture and food systems in sub-Saharan Africa in a 4 C + world. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 117–136.CrossRefGoogle Scholar
  53. Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., et al. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100, 8074–8079.CrossRefGoogle Scholar
  54. Verdin, J., Funk, C., Senay, G., & Choularton, R. (2005). Climate science and famine early warning. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2155.CrossRefGoogle Scholar
  55. Williams, P., & Funk, C. (2011). A westward extension of the warm pool leads to a westward extension of the walker circulation, drying eastern Africa. Climate Dynamics, V37.11-12, 2417–2435.
  56. Yohe, G., & Tol, R. S. J. (2002). Indicators for social and economic coping capacity—moving toward a working definition of adaptive capacity. Global Environmental Change-Human and Policy Dimensions, 12, 25–40.CrossRefGoogle Scholar
  57. Yusuf, A. A., & Francisco, H. (2009). Climate change vulnerability mapping for Southeast Asia. Economy and Environment Program for Southeast Asia (EEPSEA), Singapore.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David López-Carr
    • 1
    Email author
  • Narcisa G. Pricope
    • 2
  • Juliann E. Aukema
    • 3
  • Marta M. Jankowska
    • 4
  • Christopher Funk
    • 5
  • Gregory Husak
    • 1
  • Joel Michaelsen
    • 1
  1. 1.Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Department of Geography and GeologyUniversity of North Carolina WilmingtonWilmingtonUSA
  3. 3.National Center for Ecological Analysis & Synthesis (NCEAS)University of California Santa BarbaraSanta BarbaraUSA
  4. 4.Department of Family and Preventative Medicine, Center for Wireless and Population Health SystemsUniversity of California, San DiegoSan DiegoUSA
  5. 5.United States Geological SurveyUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations