Generation of seiches by moving baric formations

Abstract

We consider a plane problem of generation of barotropic seiches in the case of motion of a region of disturbances of atmospheric pressure over a bounded basin. The nonlinear system of equations of long waves with regard for the quadratic dependence of bottom friction is solved by the finite-difference method. The calculations are carried out for three basins of variable depth corresponding to rectangular sections of the Black Sea and Sea of Azov. It is shown that the passage of the baric anomaly over the basin is accompanied by the generation of the lowest seiches. The oscillations of fluid are especially intense in the shallow-water zones of the basins. Seiches exhibit a trend to intensification as the velocity of motion of the atmospheric disturbance increases. The dependence on the width of the baric anomaly is not monotonic. In the shelf zone, the amplitude of oscillations of the level can be several times higher that the pure hydrostatic response of the sea surface. In the analyzed basins, the influence of nonlinearity on the seiches is weak.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. S. Monin, V. M. Kamenkovich, and V. G. Kort, Variability of the World Ocean [in Russian], Gidrometeoizdat, Leningrad (1974).

    Google Scholar 

  2. 2.

    L. Magaard, “On the generation of baroclinic Rossby waves by meteorological forces,” J. Phys. Oceanogr., 7, No. 3, 359–364 (1977).

    Article  Google Scholar 

  3. 3.

    C. Frankignoul and P. Müller, “Quasigeostrophic response of an infinite β-plane ocean to stochastic forcing by the atmosphere,” J. Phys. Oceanogr., 9, No. 1, 104–127 (1979).

    Article  Google Scholar 

  4. 4.

    S. S. Lappo, Medium-Scale Dynamical Processes in the Ocean Induced by the Atmosphere [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  5. 5.

    R. M. Ponte, D. A. Salstein, and R. D. Rosen, “Sea level response to pressure forcing in a barotropic numerical model,” J. Phys. Oceanogr., 21, No. 7, 1043–1057 (1991).

    Article  Google Scholar 

  6. 6.

    R. M. Ponte, “Variability in a homogeneous global ocean forced by barometric pressure,” Dyn. Atmosph. Ocean., 18, Nos. 3–4, 209–234 (1993).

    Article  Google Scholar 

  7. 7.

    R. M. Ponte, “Understanding the relation between wind-and pressure-driven sea level variability,” J. Geophys. Res., 99, No. C4, 8033–8039 (1994).

    Article  Google Scholar 

  8. 8.

    E. A. Kulikov, P. P. Medvedev, and S. S. Lappo, “Recording of the tsunami of December 26, 2004 in the Indian Ocean from the space,” Dokl. Ross. Akad. Nauk, 401, No. 4, 537–542 (2005).

    Google Scholar 

  9. 9.

    J. Proudman, Dynamical Oceanography, Methuen, London (1953).

    Google Scholar 

  10. 10.

    E. Pelinovsky, T. Talipova, A. Kurkin, et al., “Nonlinear mechanism of tsunami generation by atmospheric disturbances,” Natur. Hazar. Earth Syst. Sci., 1, 243–250 (2001).

    Google Scholar 

  11. 11.

    S. F. Dotsenko and N. A. Miklashevskaya, “Transformation of the sea level under a moving region of disturbances of the atmospheric pressure,” Morsk. Gidrofiz. Zh., No. 2, 3–15 (2007).

    Google Scholar 

  12. 12.

    D. Gomes, S. Monserrat, and J. Tintore, “Pressure-forced seiches of large amplitude in inlets of the Balearic Islands,” J. Geophys. Res., 98, No. C8, 14,437–14,445 (1993).

    Google Scholar 

  13. 13.

    M. Garcies, D. Gomes, and S. Monserrat, “Pressure-forced seiches of large amplitude in inlets of the Balearic Islands. 2. Observational study,” J. Geophys. Res., 101, No. C3, 6453–6467 (1996).

    Article  Google Scholar 

  14. 14.

    A. Rabinovich and S. Monserrat, “Generation of meteorological tsunami (large amplitude seiches) near the Balearic and Kuril Islands,” Natur. Hazar., 18, 27–55 (1998).

    Article  Google Scholar 

  15. 15.

    M. P. C. de Jong, L. H. Holthuijen, and J. A. Battjes, “Generation of seiches by cold fronts over the southern North Sea,” J. Geophys. Res., 108, No. C4, 14–19 (2003).

    Article  Google Scholar 

  16. 16.

    V. N. Eremeev, A. V. Konovalov, and L. V. Cherkesov, “Simulation of long barotropic waves in the Black Sea induced by moving baric disturbances,” Okeanologiya, 36, No. 2, 191–196 (1996).

    Google Scholar 

  17. 17.

    V. N. Eremeev, A. V. Konovalov, Yu. V. Manilyuk, and L. V. Cherkesov, “Simulation of long waves in the Sea of Azov induced by the passage of cyclones,” Okeanologiya, 40, No. 5, 658–665 (2000).

    Google Scholar 

  18. 18.

    N. E. Vol'tsinger, K. A. Klevannyi, and E. N. Pelinovskii, Long-Wave Dynamics of the Coastal Zone [in Russian], Gidrometeoizdat, Leningrad (1989).

    Google Scholar 

  19. 19.

    F. G. Tricomi, Differential Equations, Blackie, London (1961).

    Google Scholar 

  20. 20.

    V. A. Ivanov, Yu. V. Manilyuk, and L. V. Cherkesov, “Seiches in the Black Sea,” Meteorol. Gidrol., No. 11, 57–63 (1996).

  21. 21.

    V. A. Ivanov, Yu. V. Manilyuk, and L. V. Cherkesov, “Seiches of the Sea of Azov,” Meteorol. Gidrol., No. 6, 105–110 (1994).

    Google Scholar 

  22. 22.

    N. E. Vol'tsinger and R. V. Pyaskovskii, Basic Oceanological Problems of the Theory of Shallow Water [in Russian], Gidrometeoizdat, Leningrad (1968).

    Google Scholar 

  23. 23.

    M. Pasarić, Z. Pasarić, and M. Orlić, “Response of the Adriatic sea level to the air pressure and wind forcing at low frequencies (0.01–0.1 cpd),” J. Geophys. Res., 105, No. C5, 11,423–11,439 (2000).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. F. Dotsenko.

Additional information

__________

Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 3–15, November–December, 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dotsenko, S.F., Miklashevskaya, N.A. Generation of seiches by moving baric formations. Phys Oceanogr 17, 0 (2007). https://doi.org/10.1007/s11110-008-9003-9

Download citation

Keywords

  • Bottom Friction
  • Shelf Zone
  • Horizontal Structure
  • Atmospheric Disturbance
  • Baric Field