Skip to main content
Log in

Low-complexity high linewidth-tolerant carrier synchronization for 16QAM using pilot-assisted RLS algorithm

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we present a data-aided feedback technique based on the recursive least squares (RLS) algorithm to synchronize the local oscillator with the remote carrier by jointly estimating the carrier frequency offset (CFO) and phase noise (PN), even for large CFO ranges with better laser linewidth tolerance. The CFO and PN are modeled together by a linear regression model, and the filter coefficient vector is recursively learned using the RLS algorithm. Numerical simulation results on a polarization division multiplexed 16QAM, 224 Gbps data rate system with multiple spans demonstrate a significant improvement in Q-factor over other widely used techniques such as blind phase search and fourth-order periodogram maximization. Furthermore, the proposed technique has been shown to achieve synchronization of the carrier at a CFO as high as 10 GHz and exhibits a laser linewidth tolerance as high as 1.45 MHz in the low CFO range. Analysis of our proposed technique shows that computational complexity is much less compared to other widely used techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request

References

  1. Winzer, P.J., Neilson, D.T., Chraplyvy, A.R.: Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Opt. Express 26, 24190 (2018). https://doi.org/10.1364/oe.26.024190

    Article  Google Scholar 

  2. Ip, E., Lau, A.P.T., Barros, D.J.F., Kahn, J.M.: Coherent detection in optical fiber systems. Opt. Express 16, 753 (2008). https://doi.org/10.1364/oe.16.000753

    Article  Google Scholar 

  3. Ng, W.-C., Nguyen, A.T., Ayotte, S., Park, C.-S., Rusch, L.A.: Impact of sinusoidal tones on parallel decision-directed phase recovery for 64-QAM. IEEE Photon. Technol. Lett. 26, 486–489 (2014). https://doi.org/10.1109/lpt.2013.2297708

    Article  Google Scholar 

  4. Yu, J., Li, X., Zhang, J.: Digital Signal Processing for High-speed Optical Communication. World Scientific Publishing Company, Singapore (2018)

    Book  Google Scholar 

  5. Faruk, Md.S., Savory, S.J.: Digital signal processing for coherent transceivers employing multilevel formats. J. Lightwave Technol. 35, 1125–1141 (2017). https://doi.org/10.1109/jlt.2017.2662319

    Article  Google Scholar 

  6. Leven, A., Kaneda, N., Koc, U.-V., Chen, Y.-K.: Frequency estimation in intradyne reception. IEEE Photon. Technol. Lett. 19, 366–368 (2007). https://doi.org/10.1109/lpt.2007.891893

    Article  Google Scholar 

  7. Sun, Y., Zhou, X.: Blind carrier frequency recovery methods for coherent receivers using QAM modulation formats. US patent (2011)

  8. Selmi, M., Jaouen, Y., Ciblat, P.: Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems. In 2009 35th European Conference on Optical Communication pp. 1-2. IEEE, (2009)

  9. Zhou, X., Yu, J., Huang, M.-F., Shao, Y., Wang, T., Nelson, L., Magill, P., Birk, M., Borel, P.I., Peckham, D.W., Lingle, R., Zhu, B.: 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission Over 320 Km using both pre- and post-transmission digital signal processing. J. Lightwave Technol. 29, 571–577 (2011). https://doi.org/10.1109/jlt.2011.2105856

    Article  Google Scholar 

  10. Hoffmann, S., Bhandare, S., Pfau, T., Adamczyk, O., Wordehoff, C., Peveling, R., Porrmann, M., Noe, R.: Frequency and phase estimation for coherent QPSK transmission with unlocked DFB lasers. IEEE Photon. Technol. Lett. 20, 1569–1571 (2008). https://doi.org/10.1109/lpt.2008.928846

    Article  Google Scholar 

  11. Tang, B., Zhang, J., Hu, S., Xu, B., Zhang, H., Ge, G., Qiu, K.: Low complexity two-stage FOE using modified zoom-FFT for coherent optical M-QAM systems. IEEE Photon. Technol. Lett. 32, 263–266 (2020). https://doi.org/10.1109/lpt.2020.2969701

    Article  Google Scholar 

  12. Zhou, X.: Carrier recovery in coherent optical communication systems. In: Zhou, X., Xie, C. Enabling technologies for high spectral-efficiency coherent optical communication networks. Wiley, Hoboken, (2016)

  13. Zhou, X., Chen, X., Long, K.: Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence. IEEE Photon. Technol. Lett. 24, 82–84 (2012). https://doi.org/10.1109/lpt.2011.2172790

    Article  Google Scholar 

  14. Viterbi, A.J., Viterbi, A.M.: Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Inf. Theory 29, 543–551 (1983). https://doi.org/10.1109/tit.1983.1056713

    Article  Google Scholar 

  15. Hoffmann, S., Peveling, R., Pfau, T., Adamczyk, O., Eickhoff, R., Noe, R.: Multiplier-free real-time phase tracking for coherent QPSK receivers. IEEE Photon. Technol. Lett. 21, 137–139 (2009). https://doi.org/10.1109/lpt.2008.2009228

    Article  Google Scholar 

  16. Fatadin, I., Ives, D., Savory, S.J.: Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning. IEEE Photon. Technol. Lett. 22, 631–633 (2010). https://doi.org/10.1109/lpt.2010.2043524

    Article  Google Scholar 

  17. Pfau, T., Hoffmann, S., Noe, R.: Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for \(M\)-QAM constellations. J. Lightwave Technol. 27, 989–999 (2009). https://doi.org/10.1109/jlt.2008.2010511

    Article  Google Scholar 

  18. Magarini, M., Barletta, L., Spalvieri, A., Vacondio, F., Pfau, T., Pepe, M., Bertolini, M., Gavioli, G.: Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers. IEEE Photon. Technol. Lett. 24, 739–741 (2012). https://doi.org/10.1109/lpt.2012.2187439

    Article  Google Scholar 

  19. Spalvieri, A., Barletta, L.: Pilot-aided carrier recovery in the presence of phase noise. IEEE Trans. Commun. 59, 1966–1974 (2011). https://doi.org/10.1109/tcomm.2011.051311.100047

    Article  Google Scholar 

  20. Yue, Y., Wang, Q., Anderson, J.: Experimental investigation of 400 Gb/s data center interconnect using unamplified high-baud-rate and high-order QAM single-carrier signal. Appl. Sci. 9, 2455 (2019). https://doi.org/10.3390/app9122455

    Article  Google Scholar 

  21. OIF.: 400G ZR Implementation Agreement. https://www.oiforum.com/wp-content/uploads/OIF-400ZR-01.0_reduced2.pdf. Accessed 04 March (2023)

  22. Jain, A., Krishnamurthy, P.K.: Phase noise tracking and compensation in coherent optical systems using Kalman filter. IEEE Commun. Lett. 20, 1072–1075 (2016). https://doi.org/10.1109/lcomm.2016.2550429

    Article  Google Scholar 

  23. Jain, A., Krishnamurthy, P.K., Landais, P., Anandarajah, P.M.: EKF for joint mitigation of phase noise, frequency offset and nonlinearity in 400 Gb/s PM-16-QAM and 200 Gb/s PM-QPSK systems. IEEE Photon. J. 9, 1–10 (2017). https://doi.org/10.1109/jphot.2017.2649223

    Article  Google Scholar 

  24. Jignesh, J., Corcoran, B., Lowery, A.: Parallelized unscented Kalman filters for carrier recovery in coherent optical communication. Opt. Lett. 41, 3253 (2016). https://doi.org/10.1364/ol.41.003253

    Article  Google Scholar 

  25. Inoue, T., Namiki, S.: Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter. Opt. Express 22, 15376 (2014). https://doi.org/10.1364/oe.22.015376

    Article  Google Scholar 

  26. Sharma, S., Krishnamurthy, P.K.: Reduced sampling rate Kalman filters for carrier phase and frequency offset tracking in 200 Gbps 16 QAM coherent communication system. Sci. Rep. (2021). https://doi.org/10.1038/s41598-020-80822-z

    Article  Google Scholar 

  27. Keysight: Kalman Filter Based Estimation and Demodulation of Complex Signals. https://www.keysight.com/in/en/assets/7018-02682/white-papers/5990-6409.pdf Accessed 04 March (2023)

  28. Haykin, S.: Adaptive Filter Theory. Prentice Hall, New Jersey (2001). https://doi.org/10.1604/9780130901262

  29. Savory, S.J.: Digital coherent optical receivers: algorithms and subsystems. IEEE J. Sel. Top. Quant. Electron. 16, 1164–1179 (2010). https://doi.org/10.1109/jstqe.2010.2044751

    Article  Google Scholar 

  30. Paleologu, C., Benesty, J., Ciochina, S.: A Robust variable forgetting factor recursive least-squares algorithm for system identification. IEEE Signal Process. Lett. 15, 597–600 (2008). https://doi.org/10.1109/lsp.2008.2001559

    Article  Google Scholar 

  31. Xie, C.: Polarization and nonlinear impairments in fiber communication systems. In: Zhou, X., Xie, C. Enabling technologies for high spectral-efficiency coherent optical communication networks. Wiley, Hoboken (2016)

  32. Zhang, F., Luo, Y., Wang, Y., Li, L., Zhu, L., Chen, Z., Wu, C.: Experimental comparison of different BER estimation methods for coherent optical QPSK transmission systems. IEEE Photon. Technol. Lett. 23, 1343–1345 (2011). https://doi.org/10.1109/lpt.2011.2160718

    Article  Google Scholar 

  33. Schmogrow, R., Nebendahl, B., Winter, M., Josten, A., Hillerkuss, D., Koenig, S., Meyer, J., Dreschmann, M., Huebner, M., Koos, C., Becker, J.: Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photon. Technol. Lett. 24, 61–63 (2011). https://doi.org/10.1109/LPT.2011.2172405

    Article  Google Scholar 

  34. Han, J., Li, W., Huang, L., Li, H., Hu, Q., Yu, S.: Carrier phase estimation based on error function calculation for 16-QAM systems. IEEE Photon. Technol. Lett. 28, 2561–2564 (2016). https://doi.org/10.1109/lpt.2016.2605677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunabh Deka.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, A., Sharma, S. & Krishnamurthy, P.K. Low-complexity high linewidth-tolerant carrier synchronization for 16QAM using pilot-assisted RLS algorithm. Photon Netw Commun (2024). https://doi.org/10.1007/s11107-024-01019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11107-024-01019-2

Keywords

Navigation