Skip to main content
Log in

Performance analysis of hybrid underwater wireless system for shallow sea monitoring

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper investigates the performance of hybrid dual hop underwater system which has been proposed for monitoring vast region under shallow sea environment. In comparison to conventional acoustic underwater systems, this hybrid underwater opto-acoustic sensor network (UOASN) is designed to offer higher data rates and shorter propagation delays by including optical carrier, which is a basic requirement of real-time monitoring application. An acoustic sensor and an optical sensor are mounted on shallow water floor at different locations that acquire the surrounding information and transmit it continuously to the underwater vehicle (UV) based on round-robin scheduling. UV is comprised of decode-and-forward relaying mechanism. The underwater acoustic link is determined by \(\alpha\)-\({\mathcal {F}}\) fading distribution and underwater optical link follows the mixture Exponential-Generalized Gamma (EGG) model to characterize channel irradiance fluctuations. The novel closed form expressions for various end to end (E2E) signal-to-noise ratio (SNR) statistics such as equivalent probability density function (PDF), cumulative distribution function (CDF) and moments have been derived. Also, the closed form expressions are obtained for outage probability, average bit error rate, ergodic capacity and outage capacity. In order to demonstrate how different acoustic parameter settings and optical turbulence affect the system’s performance, the closed form asymptotic expressions are derived for outage probability and average bit error rate to gain insights of the models. Such analysis proves the effectiveness and feasibility of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data (results and graphs) related to the findings of this study can be made available from the corresponding author upon reasonable request.

References

  1. Heidemann,J., Ye, W., Wills, J., Syed, A., Li, Y.: Research challenges and applications for underwater sensor networking. In: IEEE Wireless Communications and Networking Conference, pp. 228-235 (2006)

  2. Che, X., Wells, I., Dickers, G., Kear, P., Gong, X.: Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Commun. Mag. 48, 143–151 (2010). https://doi.org/10.1109/MCOM.2010.5673085

    Article  Google Scholar 

  3. Akyildiz, I.F., Wang, P., Sun, Z.: Realizing underwater communication through magnetic induction. IEEE Commun. Mag. 53, 42–48 (2015)

    Article  Google Scholar 

  4. Stojanovic, M., Preisig, J.: Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun. Mag. 47, 84–89 (2009)

    Article  Google Scholar 

  5. Zeng, Z., Zhang, H., Dong, Y., Cheng, J.: A survey of underwater wireless optical communication. IEEE Commun. Surv. Tutor. (2016). https://doi.org/10.1109/COMST.2016.2618841

    Article  Google Scholar 

  6. Xing, F., Yin, H., Ji, X., Leung, V.C.M.: An adaptive and energy-efficient algorithm for surface gateway deployment in underwater optical/acoustic hybrid sensor networks. IEEE Commun. Lett. 22, 1810–1813 (2018). https://doi.org/10.1109/LCOMM.2018.2854279

    Article  Google Scholar 

  7. Han, S., Noh, Y., Liang, R., Chen, R.S., Cheng, Y.J., Gerla, M.: Evaluation of underwater optical-acoustic hybrid network. China Commun. 11, 49–59 (2014)

    Article  Google Scholar 

  8. Zhang, D., N’Doye, I., Ballal, T., Al-Naffouri, T.Y., Alouini, M.S., Laleg-Kirati, T.M.: Localization and tracking control using hybrid acoustic-optical communication for autonomous underwater vehicles. IEEE Internet Things J. 7, 10048–10060 (2020). https://doi.org/10.1109/JIOT.2020.2995799

    Article  Google Scholar 

  9. Shen, Z., Yin, H., Jing, L., Liang, Y., Wang, J.: A cooperative routing protocol based on q-learning for underwater optical-acoustic hybrid wireless sensor networks. IEEE Sens. J. 22, 1041–1050 (2022). https://doi.org/10.1109/JSEN.2021.3128594

    Article  Google Scholar 

  10. Celik, A., Saeed, N., Shihada, B., Al-Naffouri, T.Y., Alouini, M.S.: Opportunistic routing for opto-acoustic internet of underwater things. IEEE Internet Things J. 9, 2165–2179 (2022). https://doi.org/10.1109/JIOT.2021.3090301

    Article  Google Scholar 

  11. Hasna, M.O., Alouini, M.S.: A performance study of dual-hop transmissions with fixed gain relays. IEEE Trans. Wireless Commun. 3, 1963–1968 (2004)

    Article  Google Scholar 

  12. Zhang, W., Stojanovic, M., Mitra, U.: Analysis of a linear multihop underwater acoustic network. IEEE J. Oceanic Eng. 35, 961–970 (2010)

    Article  Google Scholar 

  13. Simão, D.H., Chang, B.S., Brante, G., Pellenz, M.E., Souza, R.D.: Energy efficiency of multi-hop underwater acoustic networks using fountain codes. IEEE Access 8, 23110–23119 (2020)

    Article  Google Scholar 

  14. Saeed, N., Celik, A., Alouini, M.S., Al-Naffouri, T.Y.: Performance analysis of connectivity and localization in multi-hop underwater optical wireless sensor networks. IEEE Trans. Mob. Comput. 18, 2604–2615 (2019). https://doi.org/10.1109/TMC.2018.2878672

    Article  Google Scholar 

  15. Celik, A., Saeed, N., Al-Naffouri, T.Y., Alouini, M.S.:Modeling and performance analysis of multihop underwater optical wireless sensor networks. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), 1-6 (2018)

  16. Miridakis, N.I., Matthaiou, M., Karagiannidis, G.K.: Multiuser relaying over mixed RF/FSO links. IEEE Trans. Commun. 62, 1634–1645 (2014)

    Article  Google Scholar 

  17. Anees, S., Bhatnagar, M.R.: Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectron. 9, 232–240 (2015)

    Article  Google Scholar 

  18. Gupta, A., Sharma, N., Garg, P., Jayakody, D.N.K., Aleksandrovich, C.Y., Li, J.: Asymmetric satellite-underwater visible light communication system for oceanic monitoring. IEEE Access 7, 133342–133350 (2019). https://doi.org/10.1109/ACCESS.2019.2936422

    Article  Google Scholar 

  19. Elamassie, M., Miramirkhani, F., Uysal, M.: Performance Characterization of Underwater Visible Light Communication. IEEE Trans. Commun. 67, 543–552 (2019). https://doi.org/10.1109/TCOMM.2018.2867498

    Article  Google Scholar 

  20. Chen, W., Yu, H., Guan, Q., Ji, F., Chen, F.: Reliable and opportunistic transmissions for underwater acoustic networks. IEEE Network 32, 94–99 (2018). https://doi.org/10.1109/MNET.2018.1700280

    Article  Google Scholar 

  21. Radosevic, A., Proakis, J.G., Stojanovic, M.: Statistical characterization and capacity of shallow water acoustic channels," OCEANS 2009-EUROPE, 2009, pp. 1-8, https://doi.org/10.1109/OCEANSE.2009.5278349.

  22. Nouri, H., Uysal, M., Panayirci, E.: Information theoretical performance analysis and optimisation of cooperative underwater acoustic communication systems. IET Commun. 10, 812–823 (2016)

    Article  Google Scholar 

  23. Jalil, A.M., Ghrayeb, A.: Distributed channel coding for underwater acoustic cooperative networks. IEEE Trans. Commun. 62, 848–856 (2014). https://doi.org/10.1109/TCOMM.2014.012314.130425

    Article  Google Scholar 

  24. Wang, C., Wang, Z., Sun, W., Fuhrmann, D.R.: Reinforcement learning-based adaptive transmission in time-varying underwater acoustic channels. IEEE Access 6, 2541–2558 (2018). https://doi.org/10.1109/ACCESS.2017.2784239

    Article  Google Scholar 

  25. Badarneh, O.S.: The \(\alpha\)-\({\cal{F} }\) composite fading distribution: statistical characterization and applications. IEEE Trans. Veh. Technol. 69, 8097–8106 (2020). https://doi.org/10.1109/TVT.2020.2995665

    Article  Google Scholar 

  26. Sun, Q., Zhang, Z., Zhang, Y., López-Benítez, M., Zhang, J.: Performance analysis of dual-hop wireless systems over mixed FSO/RF fading channel. IEEE Access 9, 85529–85542 (2021). https://doi.org/10.1109/ACCESS.2021.3085821

    Article  Google Scholar 

  27. Gercekcioglu, H.: Bit error rate of focused Gaussian beams in weak oceanic turbulence. J. Opt. Soc. Am. A 31, 1963–1968 (2014)

    Article  Google Scholar 

  28. Yi, X., Li, Z., Liu, Z.: Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. Appl. Opt. 54, 1273–1278 (2015)

    Article  Google Scholar 

  29. Jamali, M.V., Khorramshahi, P.A.T., Chizari, A., Shahsavari, S., AbdollahRamezani, S., Fazelian, M., Bahrani, S., Salehi, J.A.: Statistical distribution of intensity fluctuations for underwater wireless optical channels in the presence of air bubbles, pp. 1–6. (Tehran: Iran Workshop on Communication and Information Theory 2016)

  30. Oubei, H.M., Zedini, E., ElAfandy, R.T., Kammoun, A., Ng, T.K., Hamdi, M., Alouini, M.S., Ooi, B.S.: Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications. 22nd OptoElectronics and Communications Conference, (2017)

  31. Oubei, H.M., Zedini, E., ElAfandy, R.T., Kammoun, A., Abdallah, M., Ng, T.K., Hamdi, M., Alouini, M.S., Ooi, B.S.: Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. Opt. Lett. 42, 2455–2458 (2017)

    Article  Google Scholar 

  32. Zedini, E., Oubei, H.M., Kammoun, A., Hamdi, M., Ooi, B.S., Alouini, M.S.: A new simple model for underwater wireless optical channels in the presence of air bubbles. In: IEEE Global Communications Conference (GLOBECOM’17), 1-6 (2017)

  33. Zedini, E., Oubei, H.M., Kammoun, A., Hamdi, B.S., Alouini, M.S.: Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems. IEEE Trans. Commun. 67, 2893–2907 (2019). https://doi.org/10.1109/TCOMM.2019.2891542

    Article  Google Scholar 

  34. Bhatnagar, R., Garg, P.:Hybrid underwater wireless system for shallow sea monitoring: an outage analysis. In: 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1-5 (2022). https://doi.org/10.1109/CONECCT55679.2022.9865697

  35. Prudnikov, A.P., Brychkov, J.A., Marichev, O.I.: Integrals and series: more special functions. New York, USA (1990)

  36. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions Hardback and CD-ROM. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  37. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, California (2007)

  38. Ashrafzadeh, B., Soleimani-Nasab, E., Kamandar, M., Uysal, M.: A framework on the performance analysis of dual-hop mixed FSO-RF cooperative systems. IEEE Trans. Wireless Commun. 67, 4939–4954 (2019)

    Article  Google Scholar 

  39. Kilbas, A.A.:H-Transforms: Theory and Applications. Boca Raton, USA (2004)

  40. Zedini, E., Zedini, Soury, Alouini, M.S.: On the performance analysis of dual-hop mixed FSO/RF systems. IEEE Trans. Wireless Commun. 15, 3679–3689 (2016)

    Article  Google Scholar 

  41. Wolfram Research,Inc.http://functions.wolfram.com

  42. Zedini, E., Soury, H., Alouini, S.: Dual-Hop FSO transmission systems over Gamma-Gamma turbulence with pointing errors. IEEE Trans. Wireless Commun. 16, 784–796 (2017)

    Article  Google Scholar 

  43. Badarneh, O.S., Costa, D.B., Benjillali, M., Alouini, M.: Selection combining over double \(\alpha\)-\(\mu\) fading channels. IEEE Trans. Veh. Technol. 69, 3444–3448 (2020). https://doi.org/10.1109/TVT.2020.2969224

    Article  Google Scholar 

  44. Balti, E., Guizani, M.: Mixed RF/FSO cooperative relaying systems with co-channel interference. IEEE Trans. Commun. 66, 4014–4027 (2018). https://doi.org/10.1109/TCOMM.2018.2818697

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parul Garg.

Ethics declarations

Conflict of interest

There are no conflicts of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar, R., Garg, P. Performance analysis of hybrid underwater wireless system for shallow sea monitoring. Photon Netw Commun 46, 78–89 (2023). https://doi.org/10.1007/s11107-023-01003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-023-01003-2

Keywords

Navigation