Skip to main content
Log in

Design of tunable optical frequency comb generation based on electro-optic modulator

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

An optical frequency comb having 24 channels with 1.1 dB maximum power deviation and tunable channel spacing is demonstrated by controlling the amplitude of a periodic Gaussian-shaped radiofrequency signal applied to the two cascaded intensity modulators followed by a phase modulator. The channel spacing and frequency of the comb generator can be tuned by tuning the RF signal oscillating frequency and frequency of the laser source, respectively. Furthermore, the comb spectrum flatness is achieved by controlling the pulse profile of periodic optical signal, which is controlled by the amplitude of a radiofrequency signal. The proposed optical frequency comb would be beneficial as a multichannel source in super-capacity and high-performance optical transport networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The authors will provide the data and material required for this manuscript.

Code availability

The authors will provide the code (if any) required for this manuscript.

References

  1. Wang, Z., Ma, M., Sun, H., Khalil, M., Adams, R., Yim, K., Jin, X., Chen, L.R.: OFC generation using CMOS compatible cascaded Mach-Zehnder modulators. IEEE J. Quantum Electron. 55(6), 8400206 (2019)

    Article  Google Scholar 

  2. Sharma, V., Singh, S., Lovkesh, Anashkina, E.A., Andrianov, A.V.: Demonstration of OFC generation using four-wave mixing in highly nonlinear fiber. Optik 241, 166948 (2021)

    Article  Google Scholar 

  3. Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017)

    Article  Google Scholar 

  4. Udem, T., Holzwarth, R., Hansch, T.W.: Optical frequency metrology. Nature 416, 233–237 (2002)

    Article  Google Scholar 

  5. Suh, M.-G., Yang, Q.-F., Yang, K.Y., Yi, X., Vahala, K.J.: Microresonator soliton dual-comb spectroscopy. Science 354(6312), 600–603 (2016)

    Article  Google Scholar 

  6. Anashkina, E.A., Koptev, M.Y., Andrianov, A.V., Dorofeev, V.V., Singh, S., Lovkesh, Leuchs, G., Kim, A.V.: Reconstruction of optical pulse intensity and phase based on SPM spectra measurements in microstructured tellurite fiber in telecommunication range. J. Light. Technol. 37(17), 4375–4381 (2019)

    Article  Google Scholar 

  7. Ozharar, S., Quinlan, F., Ozdur, I., Gee, S., Delfett, P.J.: Ultraflat optical comb generation by phase-only modulation of continuous-wave light. IEEE Photonics Technol. Lett. 20(1), 36–38 (2008)

    Article  Google Scholar 

  8. Jones, D.J., Diddams, S.A., Ranka, J.K., Stentz, A., Windeler, R.S., Hall, J.L., Cundiff, S.T.: Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000)

    Article  Google Scholar 

  9. Washburn, B.R., Diddams, S.A., Newbury, N.R., Nicholson, J.W., Yan, M.F., Jørgensen, C.G.: Phase-locked, erbium-fiber-laserbased frequency comb in the near infrared. Opt. Lett. 29(3), 250–252 (2004)

    Article  Google Scholar 

  10. Bartels, A., Heinecke, D., Diddams, S.A.: 10-GHz self-referenced OFC. Science 326(5953), 681 (2009)

    Article  Google Scholar 

  11. Burghoff, D., Kao, T.-Y., Han, N., Chan, C.W.I., Cai, X., Yang, Y., Hayton, D.J., Gao, J.-R., Reno, J.L., Qing, Hu.: Terahertz laser frequency combs. Nat. Photonics 8(6), 462–467 (2014)

    Article  Google Scholar 

  12. Kim, J., Song, Y.: Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8(3), 465–540 (2016)

    Article  Google Scholar 

  13. Uvin, S., Keyvaninia, S., Lelarge, F., Duan, G.-H., Kuyken, B., Roelkens, G.: Narrow line width frequency comb source based on an injection-locked III–V-on-silicon mode-locked laser. Opt. Express 24(5), 5277–5286 (2016)

    Article  Google Scholar 

  14. Wang, Z., et al.: A III-V-on-Si ultra-dense comb laser. Light Sci. Appl. 6(5), e16260 (2017)

    Article  Google Scholar 

  15. Liu, L., Zhang, X., Xu, T., Dai, Z., Liu, T.: Simple OFC generation using a passively mode-locked quantum dot laser. Opt. Commun. 396, 105–109 (2017)

    Article  Google Scholar 

  16. Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)

    Article  Google Scholar 

  17. Stern, B., Ji, X., Okawachi, Y., Gaeta, A.L., Lipson, M.: Batteryoperated integrated frequency comb generator. Nature 562(7727), 401–405 (2018)

    Article  Google Scholar 

  18. Dupuis, N., Doerr, C.R., Zhang, L., Chen, L., Sauer, N.J., Dong, Po., Buhl, L.L., Ahn, D.: InP-based comb generator for optical FDM. J. Light. 30(4), 466–472 (2012)

    Article  Google Scholar 

  19. Pu, M., Ottaviano, L., Semenova, E., Yvind, K.: Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8), 823–826 (2016)

    Article  Google Scholar 

  20. Sharma, V., Singh, S., Lovkesh: Cross-phase modulation based ultra-flat 90-line optical frequency comb generation. Opt. Quantum Electron. 53, 657 (2021)

    Article  Google Scholar 

  21. Sharma, V., Singh, S., Lovkesh, Anashkina, E.A., Andrianov, A.V.: Optical frequency comb generation by the exploitation of gain modulation phenomenon in semiconductor optical amplifier. Opt. Eng. 60(6), 066108 (2021)

    Google Scholar 

  22. Yang, T., Dong, J., Liao, S., Huang, D., Zhang, X.: Comparison analysis of OFC generation with nonlinear effects in highly nonlinear fibers. Opt. Express 21(7), 8508–8520 (2013)

    Article  Google Scholar 

  23. Supradeepa, V.R., Weiner, A.M.: Bandwidth scaling and spectral flatness enhancement of OFCs from phase-modulated continuous-wave lasers using cascaded four-wave mixing. Opt. Lett. 37(15), 3066–3068 (2012)

    Article  Google Scholar 

  24. Sharma, V., Singh, S., Lovkesh: Development of frequency comb generation by spectral broadening of periodic optical pulses in semiconductor laser amplifiers. J. Opt. (2022). https://doi.org/10.1088/2040-8986/ac4c86

    Article  Google Scholar 

  25. Fatome, J., Pitois, S., Millot, G.: 20-GHz to 1-GHz repetition rate pulse source based on multiple four wave mixing in optical fiber. IEEE J. Quantum Electron. 42(10), 1038–1046 (2006)

    Article  Google Scholar 

  26. Cruz, F.C., Marconi, J.D., Cerqueira, A., Fragnito, H.L.: Broadband second harmonic generation of an OFC produced by four-wave mixing in highly nonlinear fibers. Opt. Commun. 283, 1459–1462 (2010)

    Article  Google Scholar 

  27. Kun, Qu., Zhao, S., Li, X., Zhu, Z., Liang, D., Liang, D.: Ultra-flat and broadband OFCc generator via a single Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 29(2), 255–258 (2017)

    Article  Google Scholar 

  28. Yamamoto, T., Hitomi, K., Kobayashi, W., Yasaka, H.: OFC block generation by using semiconductor Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 25(1), 40–42 (2013)

    Article  Google Scholar 

  29. Martín-Mateos, P., Porro, A., Acedo, P.: Fully adaptable electro-optic dual-comb generation. IEEE Photonics Technol. Lett. 30(2), 161–164 (2018)

    Article  Google Scholar 

  30. Wang, Q., Huo, L., Xing, Y., Zhou, B.: Ultra-flat OFC generator using a single-driven dual-parallel Mach-Zehnder modulator. Opt. Lett. 39(10), 3050–3053 (2014)

    Article  Google Scholar 

  31. Lin, J., Sepehrian, H., Xu, Y., Rusch, L.A., Shi, W.: Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technol. Lett. 30(17), 1495–1498 (2018)

    Article  Google Scholar 

  32. Wu, R., Supradeepa, V.R., Long, C.M., Leaird, D.E., Weiner, A.M.: Generation of very flat OFCs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35(19), 3234–3236 (2010)

    Article  Google Scholar 

  33. Sharma, V., Singh, S., Bhatia, L.: Theoretical model of cascaded electro-optic intensity modulator-based 2.31-THz broad optical frequency comb generator. Opt. Eng. 60(11), 115107 (2021)

    Article  Google Scholar 

  34. Hmood, J.K., Emami, S.D., Noordin, K.A., Ahmad, H., Harun, S.W., Shalaby, H.M.H.: OFC generation based on chirping of Mach-Zehnder modulators. Opt. Commun. 55(6), 139–146 (2015)

    Article  Google Scholar 

  35. Li, X., Xiao, J.: Flattened optical frequency-locked multi-carrier generation by cascading one EML and one phase modulator driven by different RF clocks. Opt. Fiber Technol. 23, 116–121 (2015)

    Article  Google Scholar 

  36. Yan, J., Zhang, S., Xia, Z., Bai, M., Zheng, Z.: A tunable OFC generator using single dual parallel Mach-Zehnder modulator. Opt. Laser Technol. 72, 74–78 (2015)

    Article  Google Scholar 

  37. Zhang, F., Ge, X., Pan, S.: A two-stage OFC generator based on polarization modulators and a Mach-Zehnder interferometer. Opt. Commun. 354(14), 94–102 (2015)

    Article  Google Scholar 

  38. He, C., Pan, S., Guo, R., Zhao, Y., Pan, M.: Ultra-flat OFC generated based on cascaded polarization modulators. Opt. Lett. 37(18), 3834–3836 (2012)

    Article  Google Scholar 

  39. Cartledge, J.C., Rolland, C., Lemerle, S., Solheim, A.: Theoretical performance of 10 Gb/s lightwave systems using a III-V semiconductor Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 6(2), 282–284 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science & Technology (International Bilateral Cooperation Division), New Delhi, for their funding to the Indo-Russian joint project vide sanction no: INT/RUS/RFBR/P-312 dated: 11.03.2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Singh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Singh, S. & Lovkesh Design of tunable optical frequency comb generation based on electro-optic modulator. Photon Netw Commun 44, 133–140 (2022). https://doi.org/10.1007/s11107-022-00984-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-022-00984-w

Keywords

Navigation