Skip to main content

Performance enhancement of 8\(\times\)8 dilated banyan network using crosstalk suppressed GMZI crossbar photonic switches

Abstract

This article reports a design and analysis of 8\(\times\)8 dilated banyan network using 1\(\times\)2 and 2\(\times\)1 gated Mach−Zehnder interferometric (GMZI) crossbar photonic switches for crosstalk reduction. The GMZI crossbar switches are designed using proton exchanged channel waveguides with single-crystal lithium niobate on insulator. The features of the designed GMZI switches are its broadband operation, low insertion loss, and low crosstalk. These are verified by the numerical experiments using full-vectorial 2D finite-difference beam propagation method and using various figure-of-merits. The OFF-state feature in the proposed 1\(\times\)2 and 2\(\times\)1 GMZI switches provides a crosstalk reduction in the network since the idle switches are configured to be in OFF-state to avoid the crosstalk propagation. We performed a comparative study on 8\(\times\)8 dilated banyan network based on 2\(\times\)2 MZI switches and the proposed GMZI switches. The fully loaded 8\(\times\)8 dilated banyan network with the proposed GMZI switches leads to crosstalk reduction of more than 25 dB, which provide broadband operation over a wavelength range of 1530–1570 nm and 50% reduced footprint against the 2\(\times\)2 MZI-based implementation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Kogelnik, H.W.: Optical crossbar switching network. US Patent 4,013,000, 22 March 1977

  2. 2.

    Shimoe, T., Hajikano, K., Murakami, K.: Path-independent insertion loss optical space switch. In: Optical Fiber Communication Conference (1987)

  3. 3.

    Hinton, H.S., Erickson, J.R., Cloonan, T.J., Tooley, F.A.P., McCormick, F.B., Lentine, A.L.: An Introduction to Photonic Switching Fabrics. Springer, New York (1993)

    Book  Google Scholar 

  4. 4.

    Reinhorn, S., Amitai, Y., Friesem, A.A., Lohmann, A.W., Gorodeisky, S.: Compact optical crossbar switch. Appl. Opt. 36(5), 1039 (1997)

    Article  Google Scholar 

  5. 5.

    Pomportsis, A.S., Papazoglou, C., Papadimitriou, G.I.: Optical switching: switch fabrics, techniques, and architectures. J. Light. Technol. 21(2), 384 (2003)

    Article  Google Scholar 

  6. 6.

    Qiao, C.: A universal analytic model for photonic Banyan networks. IEEE Trans. Commun. 46(10), 1381–1389 (1998)

    Article  Google Scholar 

  7. 7.

    Yu Li, Yu., Zhang, L.Z., Poon, A.W.: Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited]. Photon. Res. 3, B10–B27 (2015)

    Article  Google Scholar 

  8. 8.

    Zeqin, L., et al.: High-performance silicon photonic tri-state switch based on balanced nested Mach–Zehnder interferometer. Sci. Rep. 7.1, 1–7 (2017)

    Google Scholar 

  9. 9.

    Youssef, M.A., El-Derini, M.N., Aly H.H.: Structure and performance evaluation of a replicated Banyan network based ATM switch. In: Proceedings IEEE International Symposium on Computers and Communications, pp. 258–265 (1999)

  10. 10.

    Antoniades, N., Roudas, I., Wagner, R.E., Jackel, J., Stern, T.E.: Crosstalk performance of a wavelength selective cross-connect mesh topology, OFC ’98, 61–62, (1998)

  11. 11.

    Qian, Y., et al.: Crosstalk optimization in low extinction-ratio switch fabrics. OFC 2014, 1–3 (2014)

    Google Scholar 

  12. 12.

    Soref, R.: Tutorial: integrated-photonic switching structures. APL Photon. 3, 021101 (2018)

    Article  Google Scholar 

  13. 13.

    Lee, B.G., Dupuis, N.: Silicon photonic switch fabrics technology and architecture. J. Lightwave Technol. 37(1), 6–20 (2019)

    Article  Google Scholar 

  14. 14.

    Duthie, P.J., Wale, M.J.: 16\(\times\)16 single chip optical switch array in lithium niobate. Electron. Lett. 27(14), 1265–1266 (1991)

    Article  Google Scholar 

  15. 15.

    Weis, R.S., Gaylord, T.K.: Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Solids Surfaces 37(4), 191–203 (1985)

    Article  Google Scholar 

  16. 16.

    Balaji, N., Meetei, T.S., Ali, M.M., Boomadevi, S., Senthilkumar, M., Pandiyan, K.: Generation of nearly flattop ultrabroadband response in a QPM device using phase shifter. J. Light. Technol. 37(3), 845–851 (2019)

    Article  Google Scholar 

  17. 17.

    Wang, C., et al.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018)

  18. 18.

    Rao, A., et al.: High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41(24), 5700 (2016)

    Article  Google Scholar 

  19. 19.

    Bahadori, M., Kar, A., Yang, Y., Lavasani, A., Goddard, L., Gong, S.: High-performance integrated photonics in thin film lithium niobate platform. In: CLEO: QELS_Fundamental Science (2019)

  20. 20.

    Kaushalram, A., Hegde, G., Talabattula, S.: Parametric analysis and comparative study of multimode waveguides on lithium niobate-on-insulator and silicon-on-insulator platforms. Opt. Eng. 58(10), 1 (2019)

    Article  Google Scholar 

  21. 21.

    Boes, A., Corcoran, B., Chang, L., Bowers, J., Mitchell, A.: Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev. 12(4), 1700256 (2018)

    Article  Google Scholar 

  22. 22.

    Poberaj, G., Hu, H., Sohler, W., Gunter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev. 6(4), 488–503 (2012)

    Article  Google Scholar 

  23. 23.

    Han, H., Cai, L., Hu, H.: Optical and structural properties of single-crystal lithium niobate thin film. Opt. Mater. (Amst) 42, 47–51 (2015)

    Article  Google Scholar 

  24. 24.

    Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A., Loncar, M.: Monolithic ultrahigh-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017)

    Article  Google Scholar 

  25. 25.

    Honardoost, A., Juneghani, F.A., Safian, R., Fathpour, S.: Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators. Opt. Express 27(5), 6495 (2019)

    Article  Google Scholar 

  26. 26.

    Cai, L., Mahmoud, A., Piazza, G.: Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications. Opt. Express 27(7), 9794 (2019)

    Article  Google Scholar 

  27. 27.

    Cai, L., Kong, R., Wang, Y., Hu, H.: Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film. Opt. Express 23(22), 29211 (2015)

    Article  Google Scholar 

  28. 28.

    Tonchev, S., Yordanov, B., Kuneva, M., Savatinova, I., Armenise, M., Passaro, V.: Waveguide Mach–Zehnder intensity modulator produced via proton exchange technology in LiNbO3. In: Devices Based on Low-Dimensional Semiconductor Structures, pp. 293–296. Springer Netherlands

  29. 29.

    Meerasha, M.A., Meetei, T.S., Pandiyan, K.: Design of configurable photonic multiplexer using proton exchanged lithium niobate on insulator. Microw. Opt. Technol. Lett. 62, 3077–3086 (2020)

  30. 30.

    Wu, R., et al.: Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8(11), 910 (2018)

    Article  Google Scholar 

  31. 31.

    Ganshin, V.A., Korkishko, Y.N.: Proton exchange in lithium niobate and lithium tantalate single crystals: regularities and specific features. Phys. Status Solidi 119(1), 11–25 (1990)

    Article  Google Scholar 

  32. 32.

    Selvaraja, S.K., Sethi, P.: Review on optical waveguides. In: Emerging Waveguide Technology, vol. 1, p. 95 (2018)

  33. 33.

    Janner, D., Tulli, D., García-Granda, M., Belmonte, M., Pruneri, V.: Micro-structured integrated electro-optic LiNbO3 modulators. Laser Photon. Rev. 3(3), 301–313 (2009)

  34. 34.

    Jin, W., Chiang, K.S.: Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings. IEEE J. Sel. Topics Quantum Electron. 26(5), 1–6 (2020)

    Google Scholar 

  35. 35.

    Gorman, T., Haxha, S.: Design optimization of \(Z\)-cut lithium niobate electrooptic modulator with profiled metal electrodes and waveguides. J. Lightwave Technol. 25(12), 3722–3729 (2007)

    Article  Google Scholar 

  36. 36.

    Qiu, W., et al.: Analysis of ultra\(-\)compact waveguide modes in thin film lithium niobate. Appl. Phys. B Lasers Opt. 118(2), 261–267 (2015)

    Article  Google Scholar 

  37. 37.

    Dumais, P.: Optical waveguide termination having a doped, light-absorbing slab. US Patent 10,359,569, July 2019

  38. 38.

    Xu, C.L., Huang, W.P., Stern, M.S., Chaudhuri, S.K.: Full-vectorial mode calculations by finite difference method. IEE Proc. Optoelectron. 141(5), 281–286 (1994)

    Article  Google Scholar 

  39. 39.

    Wang, Y., Chen, Z., Hu, H.: Analysis of waveguides on lithium niobate thin films. Crystals 8(5), 191 (2018)

    Article  Google Scholar 

  40. 40.

    Han, H., Xiang, B., Lin, T., Chai, G., Ruan, S.: Design and optimization of proton exchanged integrated electro-optic modulators in X-cut lithium niobate thin film. Crystals 9(11), 549 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India (Ref. No.: CRG/2018/001788). The authors wish to thank the SASTRA Deemed to be University for the research assistantship. The authors wish to acknowledge Optiwave Inc and Ansys Lumerical Inc for the OptiBPM and INTERCONNECT evaluation software packages, respectively. The authors wish to thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pandiyan Krishnamoorthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, .M., Madhupriya, G., Indhumathi, R. et al. Performance enhancement of 8\(\times\)8 dilated banyan network using crosstalk suppressed GMZI crossbar photonic switches. Photon Netw Commun 42, 123–133 (2021). https://doi.org/10.1007/s11107-021-00948-6

Download citation

Keywords

  • Dilated banyan network
  • Gated Mach–Zehnder interferometer
  • Photonic network
  • Blocking-state
  • Crosstalk suppression