Skip to main content

Performance evaluation of transport protocols in cloud data center networks


In recent years, cloud data centers have received increased attention by the research community, due to their key function of hosting a big number of cloud applications and services. At the same time, however, various and conflicting requirements have emerged, such as a mixture of different type of flows in shallow buffer switches, which are interconnected via fiber optics in many-to-one network topology. In this environment, the conventional transmission control protocol (TCP) exhibits severe performance degradation. In this paper, the issues affecting TCP performance in data center networks are studied and different congestion control schemes, such as CUBIC, DCTCP, HighSpeed, NewReno and Vegas, are presented and evaluated by means of computer simulations in realistic data center network scenarios. Our results show that DCTCP eliminates the performance problems of conventional TCP in data center networks and exhibits the performance and fairness properties required for efficient network deployment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    Alizadeh, M., Greenberg, A., Maltz, D., Padhye, J., Patel, P., Prabhakar, B., Sengupta, S., Sridharan, M.: Dctcp: efficient packet transport for the commoditized data center (2010)

  2. 2.

    Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B., Sengupta, S., Sridharan, M.: Data center TCP (DCTCP). In: Proceedings of the ACM SIGCOMM 2010 Conference, pp. 63–74 (2010)

  3. 3.

    Arora, M.K., Singh, K., Devra, S.: A comprehensive review of reactive and proactive congestion control methodologies. Int. J. Comput. Appl. 975, 8887

  4. 4.

    Chen, T., Gao, X., Chen, G.: The features, hardware, and architectures of data center networks: a survey. J. Parallel Distrib. Comput. 96, 45–74 (2016)

    Article  Google Scholar 

  5. 5.

    Chen, Y., Griffith, R., Liu, J., Katz, R.H., Joseph, A.D.: Understanding TCP incast throughput collapse in data center networks. In: Proceedings of the 1st ACM Workshop on Research on Enterprise Networking, pp. 73–82 (2009)

  6. 6.

    Chiu, D.M., Jain, R.: Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw. ISDN Syst. 17(1), 1–14 (1989)

    Article  Google Scholar 

  7. 7.

    Eleftherakis, G., Pappas, D., Lagkas, T., Rousis, K., Paunovski, O.: Architecting the IOT paradigm: a middleware for autonomous distributed sensor networks. Int. J. Distrib. Sens. Netw. 11(12), 139735 (2015)

    Article  Google Scholar 

  8. 8.

    Floyd, S., et al.: Highspeed TCP for large congestion windows (2003)

  9. 9.

    Henderson, T.: TCP-cubic-new. (2020)

  10. 10.

    Hua, W., Jian, G.: Analysis of TCP BIC congestion control implementation. In: 2012 International Conference on Computer Science and Service System, pp. 781–784. IEEE (2012)

  11. 11.

    Jain, V., Henderson, T.R., Tahiliani, M.P.: Data center TCP in ns-3: implementation, validation and evaluation. In: Proceedings of the 2020 Workshop on ns-3, pp. 65–72 (2020)

  12. 12.

    Jin, C., Wei, D.X., Low, S.H.: Fast TCP: motivation, architecture, algorithms, performance. In: IEEE INFOCOM 2004, vol. 4, pp. 2490–2501. IEEE (2004)

  13. 13.

    Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutor. 14(4), 1021–1036 (2012)

    Article  Google Scholar 

  14. 14.

    Kuzmanovic, A., Mondal, A., Floyd, S., Ramakrishnan, K.: Adding explicit congestion notification (ECN) capability to TCP’s syn/ack packets. RFC5562 (2009)

  15. 15.

    Lallas, E.N.: A survey on key roles of optical switching and labeling technologies on big data traffic of data centers and HPC environments. AIMS Electron. Electr. Eng. 3(3), 233 (2019)

    Article  Google Scholar 

  16. 16.

    Leith, D., Shorten, R., Lee, Y.: H-TCP: a framework for congestion control in high-speed and long-distance networks. In: PFLDnet Workshop (2005)

  17. 17.

    nsnam: ns-3.33 (2021).

  18. 18.

    Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: a simple model and its empirical validation. In: Proceedings of the ACM SIGCOMM’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 303–314 (1998)

  19. 19.

    Phanishayee, A., Krevat, E., Vasudevan, V., Andersen, D.G., Ganger, G.R., Gibson, G.A., Seshan, S.: Measurement and analysis of TCP throughput collapse in cluster-based storage systems. FAST 8, 1–14 (2008)

    Google Scholar 

  20. 20.

    Prakash, P., Dixit, A., Hu, Y.C., Kompella, R.: The {TCP} outcast problem: exposing unfairness in data center networks. In: Presented as Part of the 9th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 12), pp. 413–426 (2012)

  21. 21.

    Qin, Y., Shi, Y., Sun, Q., Zhao, L.: Analysis for unfairness of TCP outcast problem in data center networks. In: Proceedings of the 2013 25th International Teletraffic Congress (ITC), pp. 1–4. IEEE (2013)

  22. 22.

    Sreekumari, P., Jung, J..i: Transport protocols for data center networks: a survey of issues, solutions and challenges. Photon Netw. Commun. 31(1), 112–128 (2016)

    Article  Google Scholar 

  23. 23.

    Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. In: Proceedings-IEEE INFOCOM (2006)

  24. 24.

    Tang, H., Gulbeden, A., Zhou, J., Strathearn, W., Yang, T., Chu, L.: The panasas activescale storage cluster-delivering scalable high bandwidth storage. In: SC’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, pp. 53–53. IEEE (2004)

  25. 25.

    Triantafyllou, A., Sarigiannidis, P., Lagkas, T.D.: Network protocols, schemes, and mechanisms for internet of things (IoT): features, open challenges, and trends. Wirel. Commun. Mob. Comput. 2018 (2018)

  26. 26.

    Tsiknas, K., Rantos, K., Schinas, C.J., Soilemes, A.: Performance evaluation of TCP-BIAD in high-speed, long-distance networks. Computing 101(4), 319–337 (2019)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Tsiknas, K.G., Zoiros, K.E., Lagkas, T.D.: Performance analysis of high-speed TCP protocols in LTE X2 handover under realistic operational conditions. Telecommun. Syst. 77, 655–669 (2021)

    Article  Google Scholar 

  28. 28.

    Wang, G., Ren, Y., Dou, K., Li, J.: IDTCP: an effective approach to mitigating the TCP incast problem in data center networks. Inf. Syst. Front. 16(1), 35–44 (2014)

    Article  Google Scholar 

  29. 29.

    Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: IEEE INFOCOM 2004, vol. 4, pp. 2514–2524. IEEE (2004)

  30. 30.

    Xu, L., Zimmermann, A., Eggert, L., Rhee, I., Scheffenegger, R., Ha, S.: Cubic for fast long-distance networks. Internet Eng. Task Force, Fremont, CA, USA, RFC 8312 (2018)

  31. 31.

    Zhang, J., Ren, F., Tang, L., Lin, C.: Modeling and solving TCP incast problem in data center networks. IEEE Trans. Parallel Distrib. Syst. 26(2), 478–491 (2014)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Paraskevas I. Aidinidis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsiknas, K.G., Aidinidis, P.I. & Zoiros, K.E. Performance evaluation of transport protocols in cloud data center networks. Photon Netw Commun 42, 105–116 (2021).

Download citation


  • Cloud data centers
  • Data center networks
  • Fiber optics
  • TCP performance
  • Congestion control
  • ns-3