A spectrum spacing mechanism to enhance traffic grooming in elastic optical networks

Abstract

Elastic optical networks allow for a division of the optical spectrum into frequency slots, which can be combined to create channels with bandwidth defined by demand. Their flexibility provides greater spectral efficiency when compared with traditional optical networks with fixed grids. Traffic grooming strategies allow for even more efficiency in the use of network resources, reducing the number of guard bands and the utilization of transmitters and receivers. This work proposes a mechanism that influences the RMLSA algorithms causing a controlled level of spacing between the lightpaths. This makes it possible to expand lightpaths in the future to fulfill new customer requests through traffic grooming. The proposed mechanism does not require the use of specific traffic grooming or RMLSA algorithms, and it can be used in conjunction with existing solutions or future solutions. The experiments carried out show that the proposed mechanism reduces the bandwidth blocking ratio and the number of necessary transceivers, and also increases the request–lightpath ratio and energy efficiency in the network.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Beyranvand, H., Salehi, J.A.: A quality-of-transmission aware dynamic routing and spectrum assignment scheme for future elastic optical networks. J. Lightwave Technol. 31(18), 3043–3054 (2013). https://doi.org/10.1109/JLT.2013.2278572

    Article  Google Scholar 

  2. 2.

    Christodoulopoulos, K., Tomkos, I., Varvarigos, E.A.: Elastic bandwidth allocation in flexible OFDM-based optical networks. J. Lightwave Technol. 29(9), 1354–1366 (2011). https://doi.org/10.1109/JLT.2011.2125777

    Article  Google Scholar 

  3. 3.

    Fontinele, A., Santos, I., Neto, J.N., Campelo, D.R., Soares, A.: An efficient IA-RMLSA algorithm for transparent elastic optical networks. Comput. Netw. 118, 1–14 (2017). https://doi.org/10.1016/j.comnet.2017.03.003

    Article  Google Scholar 

  4. 4.

    Load balancing, multipath routing and adaptive modulation with traffic grooming in elastic optical networks. Comput. Netw. 169, 107081 (2020). https://doi.org/10.1016/j.comnet.2019.107081

  5. 5.

    Johannisson, P., Agrell, E.: Modeling of nonlinear signal distortion in fiber-optic networks. J. Lightwave Technol. 32(23), 4544–4552 (2014). https://doi.org/10.1109/JLT.2014.2361357

    Article  Google Scholar 

  6. 6.

    Ju, M., Zhou, F., Xiao, S., Zhu, Z.: Power-efficient protection with directed\(p\)-cycles for asymmetric traffic in elastic optical networks. J. Lightwave Technol. 34(17), 4053–4065 (2016). https://doi.org/10.1109/JLT.2016.2590578

    Article  Google Scholar 

  7. 7.

    Khodashenas, S., Comellas, J., Spadaro, S., Perelló, J.: Dynamic source aggregation of subwavelength connections in elastic optical networks. Photon Netw. Commun. 26(2–3), 131–139 (2013). https://doi.org/10.1007/s11107-013-0415-1

    Article  Google Scholar 

  8. 8.

    Kozicki, B., Takara, H., Yonenaga, K., Jinno, M.: Efficient elastic optical path network for transmission beyond 100G. In: W. Weiershausen, B. Dingel, A.K. Dutta, A.K. Srivastava (eds.) Optical Metro Networks and Short-Haul Systems III, vol. 7959, pp. 151 – 159. International Society for Optics and Photonics, SPIE (2011). https://doi.org/10.1117/12.879847

  9. 9.

    Majumdar, P., Pal, A., De, T.: Extending light-trail into elastic optical networks for dynamic traffic grooming. Opt. Switch. Netw. 20, 1–15 (2016). https://doi.org/10.1016/j.osn.2015.10.005

    Article  Google Scholar 

  10. 10.

    Santos, I.: A spectrum spacing mechanism to enhance traffic grooming in elastic optical networks - dataset (2021). https://doi.org/10.17632/kj4hc2fcw9.1

  11. 11.

    Sato, K.: Recent developments in and challenges of elastic optical path networking. In: 37th European Conference and Exposition on Optical Communications, p. Mo.2.K.1. Optical Society of America (2011). https://doi.org/10.1364/ECOC.2011.Mo.2.K.1

  12. 12.

    Sone, Y., Watanabe, A., Imajuku, W., Tsukishima, Y., Kozicki, B., Takara, H., Jinno, M.: Bandwidth squeezed restoration in spectrum-sliced elastic optical path networks (slice). J. Opt. Commun. Netw. 3(3), 223–233 (2011). https://doi.org/10.1364/JOCN.3.000223

    Article  Google Scholar 

  13. 13.

    Vizcaíno, J.L., Ye, Y., López, V., Jiménez, F., Musumeci, F., Tornatore, M., Pattavina, A., Krummrich, P.M.: Protection in optical transport networks with fixed and flexible grid: Cost and energy efficiency evaluation. Opt. Switch. Netw. 11, 55–71 (2014). https://doi.org/10.1016/j.osn.2013.08.005

    Article  Google Scholar 

  14. 14.

    Wang, R., Bidkar, S., Meng, F., Nejabati, R., Simeonidou, D.: Load-aware nonlinearity estimation for elastic optical network resource optimization and management. IEEE/OSA J. Opt. Commun. Netw. 11(5), 164–178 (2019). https://doi.org/10.1364/JOCN.11.000164

    Article  Google Scholar 

  15. 15.

    Wang, R., Mukherjee, B.: Spectrum management in heterogeneous bandwidth optical networks. Opt. Switch. Netw. 11, 83–91 (2014). https://doi.org/10.1016/j.osn.2013.09.003

    Article  Google Scholar 

  16. 16.

    Wang, Y., Cao, X., Hu, Q., Pan, Y.: Towards elastic and fine-granular bandwidth allocation in spectrum-sliced optical networks. IEEE/OSA J. Opt. Commun. Netw. 4(11), 906–917 (2012). https://doi.org/10.1364/JOCN.4.000906

    Article  Google Scholar 

  17. 17.

    Wu, J., Ning, Z., Guo, L.: Energy-efficient survivable grooming in software-defined elastic optical networks. IEEE Access 5, 6454–6463 (2017). https://doi.org/10.1109/ACCESS.2017.2674963

    Article  Google Scholar 

  18. 18.

    Wu, Y., Hou, W., Guo, L., Liu, Y., Sun, Z.: Green grooming in elastic optical networks. Conference on optical fiber communication, technical digest series (2014). https://doi.org/10.1364/OFC.2014.W3A.3

  19. 19.

    Yan, L., Agrell, E., Wymeersch, H., Johannisson, P., Di. Taranto, R., Brandt-Pearce, M.: Link-level resource allocation for flexible-grid nonlinear fiber-optic communication systems. IEEE Photon. Technol. Lett. 27(12), 1250–1253 (2015). https://doi.org/10.1109/LPT.2015.2415586

    Article  Google Scholar 

  20. 20.

    Zhang, J., Ji, Y., Song, M., Zhao, Y., Yu, X., Zhang, J., Mukherjee, B.: Dynamic traffic grooming in sliceable bandwidth-variable transponder-enabled elastic optical networks. J. Lightwave Technol. 33(1), 183–191 (2015). https://doi.org/10.1109/JLT.2014.2383444

    Article  Google Scholar 

  21. 21.

    Zhang, S., Martel, C., Mukherjee, B.: Dynamic traffic grooming in elastic optical networks. IEEE J. Sel. Areas Commun. 31(1), 4–12 (2013). https://doi.org/10.1109/JSAC.2013.130102

    Article  Google Scholar 

  22. 22.

    Zhang, S., Zhu, M., Sun, Q., Li, G., Chen, B.: Effective utilization of transponder in elastic CD-ROADM optical networks with traffic grooming. In: 2018 Asia communications and photonics conference (ACP), pp. 1–3 (2018). https://doi.org/10.1109/ACP.2018.8595732

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iallen G. S. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos, I.G.S., Monteiro, J.A.S., Soares, A.C.B. et al. A spectrum spacing mechanism to enhance traffic grooming in elastic optical networks. Photon Netw Commun (2021). https://doi.org/10.1007/s11107-021-00943-x

Download citation

Keywords

  • Elastic optical networks
  • Traffic grooming
  • GRMLSA