Skip to main content

Design of thermometer code-to-gray code converter circuit in quantum-dot cellular automata for nano-computing network

Abstract

This article proposes the thermometer code converter, which eliminates the requirement of binary code converter to generate gray codes in different digital modulation techniques like pulse code modulation. The nanoscale faster low-power circuit for these thermometer code-to-gray code converter has been achieved with quantum-dot cellular automata (QCA). The proposed converter circuit is made up with new QCA 2:1 multiplexer, which dominates the other existing designs in terms of QCA cells and device density. The circuits are evaluated based on area and operating speed. The design consistency is verified through theoretical values. The dissipated energy explores that the designs have lower energy dissipation. Stuck-at-fault effect analysis on the circuits has been performed. Besides, defect analysis caused by single missing cells, single extra added cells and misplaced cells is also explored. Test vectors are proposed to achieve 100% defect coverage. As encoders, these circuits can be widely employed in those high-performance functions that impose extraordinary design constraints with respect to high frequency, minimal area and low energy consumption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Google Scholar 

  2. 2.

    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)

    Google Scholar 

  3. 3.

    Lent, C.S.: Bypassing the transistor paradigm. Science 288, 1597–1599 (2000)

    Google Scholar 

  4. 4.

    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Google Scholar 

  5. 5.

    Pudi, V., Sridharan, K.: A bit-serial pipelined architecture for high-performance DHT computation in quantum-dot cellular automata. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23, 2352–2356 (2015)

    Google Scholar 

  6. 6.

    Das, J.C., De Debashis, S.P., Mondal, A Ahmadian, Ghaemi, F., Senu, N.: QCA based error detection circuit for nano communication network. IEEE Access 7, 67355–67366 (2019)

    Google Scholar 

  7. 7.

    Angizi, S., Moaiyeri, M.H., Farrokhi, S., Navi, K., Bagherzadeh, N.: Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess. Microsyst. 39, 512–520 (2015)

    Google Scholar 

  8. 8.

    Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019)

    Google Scholar 

  9. 9.

    Debnath, B., Das, J.C., De, D.: Correlation and convolution for binary image filter using QCA.". Nanomater. Energy 5(1), 61–70 (2016)

    Google Scholar 

  10. 10.

    Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photon. Netw. Commun. 38(2), 231–243 (2019)

    Google Scholar 

  11. 11.

    Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuit. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21, 1201–1209 (2013)

    Google Scholar 

  12. 12.

    Maroufi, N., Bahrepour, D.: A novel three-input approximate XOR gate design based on quantum-dot cellular automata. J. Comput. Electron. 17(2), 866–879 (2018)

    Google Scholar 

  13. 13.

    Wang, L., Xie, G.: Novel designs of full adder in quantum-dot cellular automata technology. J Supercomput (2018). https://doi.org/10.1007/s11227-018-2481-8

    Article  Google Scholar 

  14. 14.

    Rao, N.G., Srikanth, P.C., Sharan, P.: A novel quantum dot cellular automata for 4-bit code converters. Optik-Int. J. Light Electron Opt. 127, 4246–4249 (2016)

    Google Scholar 

  15. 15.

    Misra, N. K., Wairya, S., Singh, V. K.: Optimized approach for reversible code converters using quantum dot cellular automata. In Proceedings of the 4th international conference on frontiers in intelligent computing: theory and applications (FICTA) (pp. 367–378). Springer, India (2015)

  16. 16.

    You, Y.W., Jeon, J.C.: Design of extendable BCD-EXCESS 3 code convertor using quantum-dot cellular automata. J. Adv. Navig. Technol. 20, 65–71 (2016)

    Google Scholar 

  17. 17.

    Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik-Int. J. Light Electron Opt 130, 981–989 (2017)

    Google Scholar 

  18. 18.

    Ahmad, F., Bhat, G.M.D., Zahoor, P., Farooq, R.: Design of N-bit code converter using quantum-dot cellular automata (QCA).". Adv. Sci. Eng. Med. 7, 370–377 (2015)

    Google Scholar 

  19. 19.

    Gladshtein, M.: Quantum-dot cellular automata serial decimal processing-in-wire: run-time reconfigurable wiring approach. Microelectron. J. 55, 152–161 (2016)

    Google Scholar 

  20. 20.

    Ramesh, B., Rani, M.A.: Design of binary to BCD code converter using area optimized quantum dot cellular automata full adder. Int. J.Eng. (IJE). 9, 49–64 (2015)

    Google Scholar 

  21. 21.

    Das J. C., De, D.: quantum dot cellular automata based cipher text design for nano communication. In: International conference on radar, communication and computing (ICRCC), SKP Engg. College, Tamilnadu, India, 2012, pp. 343–348. https://doi.org/10.1109/ICRCC.2012.6450583.

  22. 22.

    Das, J.C., Debnath, B., De, D.: Reversible gate based cipher text using QCA for nanocommunication. Nanomater. Energy 6, 7–16 (2017)

    Google Scholar 

  23. 23.

    Sardinha, L.H., Costa, A.M.M., Neto, O.P.V., Vieira, L.F.M., Vieira, M.A.M.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31, 825–834 (2013)

    Google Scholar 

  24. 24.

    Das S., De D.: Nanocommunication using QCA: a data path selector cum router for efficient channel utilization, In Proc. ICRCC, SKP Engg. College, Tamilnadu, India, 2012, pp. 43–47

  25. 25.

    Yao, F., Zein-Sabatto, M.S., Shao, G., Bodruzzaman, M., Malkani, M.: Nanosensor data processor in quantum-dot cellular automata. J. Nanotechnol. (2014). https://doi.org/10.1155/2014/259869

    Article  Google Scholar 

  26. 26.

    Kamaraj, A., Ramya, S.:Design of router using reversible logic in quantum cellular automata. In International Conference on communication and network technologies (ICCNT), 2014. https://doi.org/10.1109/CNT.2014.7062764

  27. 27.

    Das, J.C., Purkayastha, T., De, D.: Reversible nano-router using QCA for nanocommunication. Nanomater. Energy 5, 28–42 (2016)

    Google Scholar 

  28. 28.

    Silva, D., Sardinha, L., Vieira, M., Vieira, L., Neto, O.V.: Robust serial nano-communication with QCA. IEEE Trans. on Nanotechnol. 13, 464–472 (2015)

    Google Scholar 

  29. 29.

    Das, J.C., De, D.: Quantum Dot-Cellular Automata Based Reversible Low Power Parity Generator and Parity Checker Design for Nanocommunication. Front. Inf. Technol. Electron. Eng. 17, 224–236 (2016)

    Google Scholar 

  30. 30.

    Das, J.C., Debnath, B., De, D.: Image Steganography using Quantum dot Cellular Automata. Quantum Matter. 4, 504–517 (2015)

    Google Scholar 

  31. 31.

    Debnath, B., Das, J.C., De, D.: Reversible logic based image steganography using QCA for secure nanocommunication. IET Circuits Devices Syst. 11, 58–67 (2017)

    Google Scholar 

  32. 32.

    Brown, S., Vranesic, Z.: Fundamental of Digital Logic Design with VHDL, TATA McGraw Hill companies, 2007.

  33. 33.

    Gupta, Y., Garg, L., Khandelwal, S., Gupta, S., Saini, S.: Design of low power and high speed multiplexer based thermometer to gray encoder. In Proceedings of intelligent signal processing and communications systems (ISPACS), Naha, Japan, (2013). https://doi.org/10.1109/ISPACS.2013.6704602

  34. 34.

    Gupta, Y., Saini, S.: Thermometer to Gray Encoders, Advances in Computer and Electrical Engineering. pp. 323–335, 2015. https://doi.org/10.4018/978-1-4666-6627-6.ch013

  35. 35.

    Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017)

    Google Scholar 

  36. 36.

    Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)

    Google Scholar 

  37. 37.

    Ramesh, B., Rani, M.A.: Design of an optimal decimal adder in quantum dot cellular automata. Int. J. Nanotechnol Appl 11(2), 197–211 (2017)

    Google Scholar 

  38. 38.

    Das, J.C., De, D.: Optimized multiplexer design and simulation using quantum dot-cellular automata. Indian J. Pure Appl. Phys. 54, 802–811 (2016)

    Google Scholar 

  39. 39.

    Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano- Electron. Phys. 9, 01012 (2017)

    Google Scholar 

  40. 40.

    Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Micro. J. 45, 1522–1532 (2014)

    Google Scholar 

  41. 41.

    Sen, B., Nag, A., De, A., Sikdar, B.K.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)

    Google Scholar 

  42. 42.

    Mukhopadhyay, D., Dutta, P.: quantum cellular automata based novel unit 2:1 multiplexer. Int. J. Comput. Appl. 43, 22–25 (2012)

    Google Scholar 

  43. 43.

    Beigh, M. R., Mustafa, M.: Performance evaluation of multiplexer designs in quantum-dot cellular automata (QCA). In International conference on advances in computers, communication and electronic engineering, University of Kashmir, India, March 16–18, (2015). pp. 245–249

  44. 44.

    Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electr. 13, 198–210 (2013)

    Google Scholar 

  45. 45.

    Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A novel architecture for quantum-dot cellular automata multiplexer. Int. J. Comput. Sci. Issues. 8, 55–60 (2011)

    Google Scholar 

  46. 46.

    Chabi, A.M., Roohi, A., Khademolhosseini, H., Sheikhfaal, S., Angizi, S., Navi, K., DeMara, R.F.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)

    Google Scholar 

  47. 47.

    Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano Electron. Phys. 9(1), 01012 (2017)

    Google Scholar 

  48. 48.

    Khan, A., Mandal, S.: Robust multiplexer design and analysis using quantum dot cellular automata. Int. J. Theor. Phys. 58(3), 719–733 (2019)

    MathSciNet  MATH  Google Scholar 

  49. 49.

    Khosroshahy, M.B., Moaiyeri, M.H., Angizi, S., Bagherzadeh, N., Navi, K.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017)

    Google Scholar 

  50. 50.

    Liu, W., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.E.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol. 11, 1239–1251 (2012)

    Google Scholar 

  51. 51.

    Xiaojun, M., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test. 25, 39–54 (2009)

    Google Scholar 

  52. 52.

    Sen, B., Dutta, M., Sikdar, B.K.: Efficient design of parity preserving logic in quantum-dot cellular automata targeting enhanced scalability in testing. Microelectronics J. 45, 239–248 (2014)

    Google Scholar 

  53. 53.

    Tahoori, M., Momenzadeh, M., Huang, J., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3, 432–442 (2004)

    Google Scholar 

  54. 54.

    Tahoori, M. B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale, In Proc. of the 22nd IEEE VTS, pp. 291–296, (2004).

  55. 55.

    Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular-level in combinational circuits, in Proc. of the 20th IEEE DFT, pp. 208–216 (2005).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jadav Chandra Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, J.C., De, D. Design of thermometer code-to-gray code converter circuit in quantum-dot cellular automata for nano-computing network. Photon Netw Commun 41, 259–273 (2021). https://doi.org/10.1007/s11107-021-00937-9

Download citation

Keywords

  • Thermometer code
  • Gray code
  • QCA
  • Multiplexer
  • Energy dissipation