A fault-tolerant topology control algorithm for wireless ultraviolet light covert communication network in cluster UAV


In the wireless ultraviolet sensor network, interference causes data retransmission, which is not conducive to communication between sensor nodes. Aiming at the serious communication interference problem of three-dimensional k-connected wireless ultraviolet light sensor network, this paper proposes a novel low-interference wireless ultraviolet network fault-tolerant topology control algorithm. The number of vertices disjoint paths between nodes and base stations is used as a fault-tolerance index to reduce network interference and ensure two-way fault tolerance between nodes and base stations. At the same time, genetic algorithm crossover and mutation operators are used to construct a particle swarm optimization algorithm, which is used to solve a reasonable power distribution scheme from the fault-tolerant network constructed by the 3D k-YG algorithm. The performance of the proposed algorithm is verified through simulation experiments. The experimental results show that the proposed algorithm can not only construct fault-tolerant topology, but also effectively reduce network interference.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Alexander, V., HarilaosG, S., Dimitris, V.: Connectivity issues for ultraviolet UV-C networks[J]. J Opt Communications 3(3), 199–205 (2011)

    Article  Google Scholar 

  2. 2.

    Chen, G., Abou-Galala, F., Xu, Z., Sadler, B.M.: Experimental evaluation of LED-based solar blind NLOS communication links. Opt Expr 16(19), 15059–15068 (2008)

    Article  Google Scholar 

  3. 3.

    Jieun, Yu., Heejun, R., Lee Wonjun, Du., Ding-Zhu. : Topology control in cooperative wireless ad-hoc networks J]. IEEE J Sel Areas Communications. 30(9), 1771–1779 (2012)

    Article  Google Scholar 

  4. 4.

    Zhao, T., Gao, Y., Wu, P., et al.: A networking strategy for three-dimensional wireless ultraviolet communication network[J]. Optik 151, 123–135 (2017)

    Article  Google Scholar 

  5. 5.

    Zhang Xue, Lu., Sanglu, C.G., et al.: Topology control for wireless sensor networks [J]. Journal of Software 18(4), 943–954 (2007)

    Article  Google Scholar 

  6. 6.

    Bahramgiri, M., Hajiaghayi, M., Mirrokni, V.S.: Fault-tolerant and3-di-mensional distributed topology control algorithms in wireless multi-hop networks [J]. Wireless Netw. 12(2), 179–188 (2006)

    Article  Google Scholar 

  7. 7.

    Wang, Y., Cao, L.J., Dahlberg, T.A., et al.: Self-organizing fault-tolerant topology control in large-scale three-dimensional wireless networks[J]. ACM Transactions on Autonomous and Adaptive Systems 4(3), 1923 (2009)

    Article  Google Scholar 

  8. 8.

    Lu-qiao, Z., Qing-xin, Z., Tao, Lv., et al.: Interference-aware topology optimization in wireless sensor network[J]. Journal of University of Electronic Science and Technology of China 40(4), 564–567 (2011)

    Google Scholar 

  9. 9.

    Wang, D., Long, W., Li, X.H.: An interference-reducing topology control for 3D wireless sensor networks [J]. J. Comput. Theor. Nanosci. 10(2), 442–450 (2013)

    Article  Google Scholar 

  10. 10.

    Pahl, P.J., Damrath, R.: Mathematical foundations of computational engineering a handbook [M], pp. 559–568. Springer, New York, USA (2001)

    Book  Google Scholar 

  11. 11.

    Zhao, T., Li, Q., Song, P.: A fast channel assignment scheme based on power control in wireless ultraviolet networks[J]. Computers & Electrical Engineering 56, 262 (2016)

    Article  Google Scholar 

  12. 12.

    Wang, D., Long, W., Li, X.H.: An interference-reducing topology control for 3D wireless sensor networks[J]. Journal of Computational and Theoretical Nanoscience 10(2), 442–450 (2013)

    Article  Google Scholar 

  13. 13.

    Zhang, S., Huang, Q., Hongshou, W.U., et al:. A modified particle swarm optimizer for optimal operation of hydropower station[J]. Journal of Hydroelectric Engineering 26(1), 1–5 (2007)

    Google Scholar 

  14. 14.

    Bagci, H., Korpeoglu, I., Yazici, A.: A Distributed Fault-Tolerant Topology Control Algorithm for Heterogeneous Wireless Sensor Networks[J]. IEEE Trans Parallel Distrib Syst 26(4), 914–923 (2015)

    Article  Google Scholar 

  15. 15.

    Hong, Z., Wang, R., Li, X.: A clustering-tree topology control based on the energy forecast for heterogeneous wireless sensor networks. Journal of Automatica Sinica 3, 68–77 (2016)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Huang, M., Chen, S., Zhu, Y., et al.: Topology control for time-evolving and predictable delay-tolerant networks. IEEE Trans. Comput. 62, 2308–2321 (2013)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Chen, H., Shi, K.: Topology control for predictable delay-tolerant networks based on probability. Ad Hoc Netw. 24, 147–159 (2015)

    Article  Google Scholar 

  18. 18.

    Chen, H., Shi, K., Wu, C.: Spanning tree based topology control for data collecting in predictable delay-tolerant networks. Ad Hoc Netw. 46, 48–60 (2016)

    Article  Google Scholar 

  19. 19.

    Chen, H., Shi, K., Lin, Y.: Data collection oriented topology control for predictable delay-tolerant networks. Ubiquitous Intelligence and Computing, Bali 9–12, 325–330 (2014)

    Google Scholar 

  20. 20.

    Chen, B., Jamieson, K., Balakrishnan, H., et al.: Span: an energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Netw. 8, 481–494 (2002)

    Article  Google Scholar 

  21. 21.

    Hongbo, W., Yaoxue, Z., Xiaohui, W., et al.: A Suitable Size Clustering Algorithm for Ad Hoc Wireless Networks[J]. J. Softw. 13(9), 1741–1756 (2002)

    Google Scholar 

  22. 22.

    Mathew, R., Younis, M., Elsharkawy, S.M.: Energy-efficient bootstrapping for wireless sensor networks[J]. Innov. Syst. Softw. Eng. 1(2), 205–220 (2005)

    Article  Google Scholar 

  23. 23.

    Gui, J., Hui, L., Xiong, N.: A game-based localized multi-objective topology control scheme in heterogeneous wireless networks. IEEE Access 5, 2396–2416 (2017)

    Article  Google Scholar 

  24. 24.

    Xenakis, A., Fouklas, F., Stamoulis, G., Katsavounidis, I.: Topology control with coverage and lifetimeoptimization of wireless sensor networks with unequal energy distribution. Comput. Electr. Eng. 64, 182–199 (2017)

    Article  Google Scholar 

Download references


This paper is supported by Natural Science Foundation of National Natural Science Foundation of China (61971345), Scientific Research Program of Education Department of Shaanxi Province (17-JF024), Key Industrial Chain Innovation Program of Shaanxi Province (2017ZDCXL-GY-05-03), Science and Technology Program of Xi 'an Forest District (GX1921), Science and Technology Program of Yu Lin City (2019-145), Science and Technology Program of Xi 'an City (CXY1835(4)).

Author information



Corresponding author

Correspondence to Zhao Taifei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taifei, Z., Shiyuan, S. A fault-tolerant topology control algorithm for wireless ultraviolet light covert communication network in cluster UAV. Photon Netw Commun (2021). https://doi.org/10.1007/s11107-021-00936-w

Download citation


  • Wireless UV sensor network
  • Fault-tolerant topology control
  • Network interference
  • Particle swarm optimization