Skip to main content

Performance of Airyprime beam in turbulent atmosphere


In this paper, we present scintillation and bit error rate (BER) behavior of Airyprime beam in turbulent atmosphere. We use numerical setup random phase screen which is used in wave optics to simulate the atmosphere. Our results indicate that symmetric Airyprime beams where \(\alpha_{sx} = \alpha_{sy}\) have lower point-like scintillation than Gauss beam under strong turbulence conditions. Considering aperture averaged scintillation, all selected beams show better performance than Gauss beam. This lower point-like scintillation brings us lower BER value which means to increase in performance of communication link. According to our results, we can say that \(10^{ - 3}\) times lower BER value can be obtained using Airyprime beam in free space optics systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Andrews, L.C., Al-Habash, M.A., Hopen, C.Y., Phillips, R.L.: Theory of optical scintillation: Gaussian-beam wave model. Wave Random Media 11(3), 271–291 (2001).

    Article  MATH  Google Scholar 

  2. 2.

    Fried, D.L.: Aperture averaging of scintillation. J. Opt. Soc. Am. 57(2), 169–175 (1967)

    Article  Google Scholar 

  3. 3.

    Andrews, L.C.: Laser Beam Propagation Through Random Media, 2nd edn. SPIE, Washington (2005)

    Book  Google Scholar 

  4. 4.

    Schmidt, J.D.: Numerical Simulation Optical Wave Propagation with examples in MATLAB. SPIE, Washington (2010)

    Book  Google Scholar 

  5. 5.

    Eyyuboglu, H.T., Bayraktar, M.: SNR bounds of FSO links and its evaluation for selected beams. J. Mod. Opt. 62(16), 1316–1322 (2015).

    Article  Google Scholar 

  6. 6.

    Eyyuboglu, H.T.: Scintillation behavior of cos, cosh and annular Gaussian beams in non-Kolmogorov turbulence. Appl. Phys. B Lasers O 108(2), 335–343 (2012).

    Article  Google Scholar 

  7. 7.

    Yuceer, M., Eyyuboglu, H.T., Lukin, I.P.: Scintillations of partially coherent Laguerre Gaussian beams. Appl. Phys. B Lasers O 101(4), 901–908 (2010).

    Article  Google Scholar 

  8. 8.

    Eyyuboglu, H.T., Baykal, Y., Falits, A.: Scintillation behavior of Laguerre Gaussian beams in strong turbulence. Appl. Phys. B Lasers O 104(4), 1001–1006 (2011).

    Article  Google Scholar 

  9. 9.

    Eyyuboglu, H.T.: Partially coherent Lorentz Gaussian beam and its scintillations. Appl. Phys. B Lasers O 103(3), 755–762 (2011).

    Article  Google Scholar 

  10. 10.

    Eyyuboglu, H.T., Baykal, Y., Sermutlu, E., Cai, Y.: Scintillation advantages of lowest order Bessel–Gaussian beams. Appl. Phys. B Lasers O 92(2), 229–235 (2008).

    Article  Google Scholar 

  11. 11.

    Eyyuboglu, H.T.: Area scintillations of Bessel Gaussian and modified Bessel Gaussian beams of zeroth order. Appl Phys B-Lasers O 98(1), 203–210 (2010).

    Article  Google Scholar 

  12. 12.

    Eyyuboglu, H.T., Voelz, D., Xiao, X.F.: Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation. Appl. Opt. 52(33), 8032–8039 (2013).

    Article  Google Scholar 

  13. 13.

    Eyyuboglu, H.T.: Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams. Opt. Commun. 339, 141–147 (2015).

    Article  Google Scholar 

  14. 14.

    Bayraktar, M.: Estimation of scintillation and bit error rate performance of sine hollow beam via random phase screen. Optik 188, 147–154 (2019).

    Article  Google Scholar 

  15. 15.

    Zhang, Y.L., Zhou, X.X., Yuan, X.H.: Performance analysis of sinh-Gaussian vortex beams propagation in turbulent atmosphere. Opt. Commun. 440, 100–105 (2019).

    Article  Google Scholar 

  16. 16.

    Zhang, Y.L., Ma, D.L., Zhou, Z.Y., Yuan, X.H.: Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere. Appl. Opt. 56(10), 2922–2926 (2017).

    Article  Google Scholar 

  17. 17.

    Gercekcioglu, H., Baykal, Y.: BER of annular and flat-topped beams in strong turbulence. Opt. Commun. 298, 18–21 (2013).

    Article  Google Scholar 

  18. 18.

    Zhou, G.Q., Chen, R.P., Ru, G.Y.: Airyprime beams and their propagation characteristics. Laser Phys. Lett. (2015).

    Article  Google Scholar 

  19. 19.

    Bayraktar, M.: Propagation of Airyprime beam in uniaxial crystal orthogonal to propagation axis. Optik 228, 166183 (2021)

    Article  Google Scholar 

  20. 20.

    Bayraktar, M., Eyyuboglu, H.T.: Propagation properties of optical bottle beam in turbulence. Opt. Eng. (2019).

    Article  Google Scholar 

  21. 21.

    Bayraktar, M.: Scintillation and bit error rate analysis of cylindrical-sinc Gaussian beam. Phys. Scr. (2020).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mert Bayraktar.

Ethics declarations

Conflict of interest

MB have personal conflict of interest with the potential reviewers as suggested in the non-preferred list. Please do not send this manuscript to non-preferred academicians as reviewers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, M. Performance of Airyprime beam in turbulent atmosphere. Photon Netw Commun 41, 274–279 (2021).

Download citation


  • Airyprime beam
  • Scintillation
  • Aperture averaged scintillation
  • Bit error rate
  • Turbulence