Skip to main content
Log in

Photonic crystal add–drop filter: a review on principles and applications

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Add–drop filter (ADF) is a key component in optical integrated circuits that can be used in all-optical communication networks and wavelength division multiplexing (WDM) systems. The quality factor, coupling efficiency, transmission efficiency and coupling length are important parameters in add–drop filters. Photonic crystal (PC) optical devices have become popular among researchers because their structure is suitable to embed into optical circuits. This paper covers a comprehensive review of the principle structure of ADF, coupled mode theory (CMT), types and recent applications in WDMs, accelerometer and bio/chemical sensors. Although there are some different categories of photonic crystal ring resonator-based ADF in general, all of them can be divided into photonic to two class of non-circular and circular. This article is reported a comprehensive study about ADF and improvement of these ADF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Tavousi, A., Rakhshani, M.R., Mansouri-Birjandi, M.A.: High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 429, 166–174 (2018)

    Google Scholar 

  2. Xu, Q., Manipatruni, S., Schmidt, B., Shakya, J., Lipson, M.: 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 15, 430–436 (2007)

    Google Scholar 

  3. Nishihara, H., Haruna, M., Suhara, T.: Optical integrated circuits. McGraw-Hill, New York (1989)

    Google Scholar 

  4. D’souza, N.M., Mathew, V.: Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)

    Google Scholar 

  5. Bie, Y.-Q., Grosso, G., Heuck, M., Furchi, M.M., Cao, Y., Zheng, J., Bunandar, D., Navarro-Moratalla, E., Zhou, L., Efetov, D.K.: A MoTe 2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124 (2017)

    Google Scholar 

  6. Lee, B.G., Rylyakov, A.V., Green, W.M.J., Assefa, S., Baks, C.W., Rimolo-Donadio, R., Kuchta, D.M., Khater, M.H., Barwicz, T., Reinholm, C.: Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J. Light. Technol. 32, 743–751 (2014)

    Google Scholar 

  7. Fang, Y., Sun, M.: Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015)

    Google Scholar 

  8. Robinson, S., Nakkeeran, R.: Performance evaluation of PCRR based add drop filter with different rod shapes. J. Microw. Optoelectron. Electromagn. Appl. 11, 26–38 (2012)

    Google Scholar 

  9. Safavi-Naeini, A.H., Hill, J.T., Meenehan, S., Chan, J., Gröblacher, S., Painter, O.: Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Phys. Rev. Lett. 112, 153603 (2014)

    Google Scholar 

  10. Wang, P., Ren, C., Han, P., Feng, S.: Multi-channel unidirectional and bidirectional wavelength filters in two dimensional photonic crystals. Opt. Mater. (Amst) 46, 195–202 (2015)

    Google Scholar 

  11. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Google Scholar 

  12. Busch, K., John, S.: Photonic band gap formation in certain self-organizing systems. Phys. Rev. E. 58, 3896 (1998)

    Google Scholar 

  13. Dutton, H.J.R.: Understanding optical communications. Prentice Hall PTR, New Jersey (1998)

    Google Scholar 

  14. Wu, Z., Xie, K., Yang, H.: Band gap properties of two-dimensional photonic crystals with rhombic lattice. Opt. J. Light Electron Opt. 123, 534–536 (2012)

    Google Scholar 

  15. Mehdizadeh, F., Alipour-Banaei, H.: Bandgap management in two-dimensional photonic crystal thue-morse structures. J. Opt. Commun. 34, 61–65 (2013)

    Google Scholar 

  16. Rezaei, B., Kalafi, M.: Engineering absolute band gap in anisotropic hexagonal photonic crystals. Opt. Commun. 266, 159–163 (2006)

    Google Scholar 

  17. Liu, W.-L., Liou, Y.-Y., Wei, J.-C., Yang, T.-J.: Band gap studies of 2D photonic crystals with hybrid scatterers. Phys. B Condens. Matter. 404, 4237–4242 (2009)

    Google Scholar 

  18. Bykov, V.P.: Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861 (1975)

    Google Scholar 

  19. Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018)

    Google Scholar 

  20. Elsayed, H.A.: A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals. Mater. Chem. Phys. 216, 191–196 (2018)

    Google Scholar 

  21. Divya, J., Selvendran, S., Raja, A.S.: Two-dimensional photonic crystal ring resonator-based channel drop filter for CWDM application. Photonic Netw. Commun. 35, 353–363 (2018)

    Google Scholar 

  22. Venkatachalam, K., Kumar, D.S., Robinson, S.: Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photonic Netw. Commun. 34, 100–110 (2017)

    Google Scholar 

  23. Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: All-optical 6-and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photonic Netw. Commun. 34, 248–257 (2017)

    Google Scholar 

  24. Balaji, V.R., Murugan, M., Robinson, S., Nakkeeran, R.: Integrated 25 GHz and 50 GHz spectral line width dense wavelength division demultiplexer on single photonic crystal chip. Opto Electron. Rev. 26, 285–295 (2018)

    Google Scholar 

  25. Gandhi, B., Shukla, A.K., Pandey, G.N.: Design of 1× 4 All Optical Splitter Based on 2D Photonic Crystal. In: Advances in Optical Science and Engineering. pp. 551–557. Springer (2017)

  26. Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1× 4 power splitter (PCFPS) based on hole size alteration and optofluidic infiltration. Opt. Quantum Electron. 51, 17 (2019)

    Google Scholar 

  27. Arunkumar, R., Suganya, T., Robinson, S.: Design and analysis of photonic crystal elliptical ring resonator based pressure sensor. Int. J. Photonics Opt. Technol. 3, 30–33 (2017)

    Google Scholar 

  28. Shanthi, K.V., Robinson, S.: Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sens. 4, 248–253 (2014)

    Google Scholar 

  29. Liu, Y., Salemink, H.W.M.: Sensitive all-optical channel-drop sensor in photonic crystals. J. Light. Technol. 33, 3672–3678 (2015)

    Google Scholar 

  30. Kurosaki, H., Koshiishi, H., Suzuki, T., Tsuchiya, K.: Development of tunable imaging spectro-polarimeter for remote sensing. Adv. Space Res. 32, 2141–2146 (2003)

    Google Scholar 

  31. Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis. J. Nanomater. 2016 (2016)

  32. Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Opt. J. Light Electron Opt. 123, 167–170 (2012)

    Google Scholar 

  33. Zhang, J., Chai, H., Yu, Z., Cheng, X., Ye, H., Liu, Y.: Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity. J. Mod. Opt. 64, 1626–1631 (2017)

    Google Scholar 

  34. Zhang, J., Liu, H., Ding, Y., Wang, Y.: A novel photonic crystal ring resonator configuration for add/drop filtering. Photonics Nanostructures Fundam. Appl. 30, 14–19 (2018)

    Google Scholar 

  35. Kewitsch, A.S., Rakuljic, G.A., Willems, P.A., Yariv, A.: All-fiber zero-insertion-loss add–drop filter for wavelength-division multiplexing. Opt. Lett. 23, 106–108 (1998)

    Google Scholar 

  36. Qiu, M., Jaskorzynska, B.: Design of a channel drop filter in a two-dimensional triangular photonic crystal. Appl. Phys. Lett. 83, 1074–1076 (2003). https://doi.org/10.1063/1.1599982

    Article  Google Scholar 

  37. Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct 8, 14–22 (2010)

  38. Siraji, A.A., Zhao, Y.: High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors. Opt. Lett. 40, 1508–1511 (2015)

    Google Scholar 

  39. Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Little, B.E., Haus, H.A.: U.S. Patent No. 6,101,300. Washington, DC: U.S. Patent and Trademark Office (2000)

  40. Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop filters in photonic crystals. Opt. Express 3, 4–11 (1998)

    Google Scholar 

  41. Derakhshan, M., Naseri, A., Ghazizadeh, M., Talebzadeh, R.: Simulant designing of an ultra-compact AND, OR logical gates based on two-dimensional photonic crystal waveguides. Photonic Netw. Commun. 36, 338–343 (2018)

    Google Scholar 

  42. Dutta, H.S., Goyal, A.K., Srivastava, V., Pal, S.: Coupling light in photonic crystal waveguides: a review. Photonics Nanostructures Fundam. Appl. 20, 41–58 (2016)

    Google Scholar 

  43. Fan, S., Joannopoulos, J.D.: Photonic crystals: towards large-scale integration of optical and optoelectronic circuits. Opt. Photonics News 11, 28–33 (2000)

    Google Scholar 

  44. Abbaslou, S., Gatdula, R., Lu, M., Stein, A., Soref, R.A., Jiang, W.: High-spectral-contrast symmetric modes in photonic crystal dual nanobeam resonators. IEEE Photonics Technol. Lett. 28, 2137–2140 (2016)

    Google Scholar 

  45. Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Channel drop tunneling through localized states. Phys. Rev. Lett. 80, 960 (1998)

    Google Scholar 

  46. Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Haus, H.A.: Loss-induced on/off switching in a channel add/drop filter. Phys. Rev. B. 64, 245302 (2001)

    Google Scholar 

  47. Yi-Nan, Z., Ke-Zheng, L., Xue-Hua, W., Chong-Jun, J.: A compact in-plane photonic crystal channel drop filter. Chin. Phys. B. 20, 74210 (2011)

    Google Scholar 

  48. Qiu, M.: Ultra-compact optical filter in two-dimensional photonic crystal. Electron. Lett. 40, 539–540 (2004)

    Google Scholar 

  49. Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng. 52, 60901 (2013)

    Google Scholar 

  50. Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency. Phys. Rev. B. 54, 7837 (1996)

    Google Scholar 

  51. Fan, S., Villeneuve, P.R., Joannopoulos, J.D., Khan, M.J., Manolatou, C., Haus, H.A.: Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59, 15882 (1999)

    Google Scholar 

  52. Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)

  53. Wang, Z., Fan, S.: Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator. Photonics Nanostructures Fundam. Appl. 4, 132–140 (2006)

    Google Scholar 

  54. Baba, T.: Slow light in photonic crystals. Nat. Photonics 2, 465–473 (2008)

    Google Scholar 

  55. Mirjalili, S.M., Merikhi, B., Mirjalili, S.Z., Zoghi, M., Mirjalili, S.: Multi-objective versus single-objective optimization frameworks for designing photonic crystal filters. Appl. Opt. 56, 9444–9451 (2017)

    Google Scholar 

  56. Safdari, M.J., Mirjalili, S.M., Bianucci, P., Zhang, X.: Multi-objective optimization framework for designing photonic crystal sensors. Appl. Opt. 57, 1950–1957 (2018)

    Google Scholar 

  57. Mirjalili, S.M., Mirjalili, S.Z.: Single-objective optimization framework for designing photonic crystal filters. Neural. Comput. Appl. 28, 1463–1469 (2017)

  58. Mirjalili, S.M.: SoMIR framework for designing high-NDBP photonic crystal waveguides. Appl. Opt. 53, 3945–3953 (2014)

    Google Scholar 

  59. Mirjalili, S.M., Mirjalili, S., Lewis, A.: A novel multi-objective optimization framework for designing photonic crystal waveguides. IEEE Photonics Technol. Lett. 26, 146–149 (2014)

    Google Scholar 

  60. Mirjalili, S.M., Mirjalili, S.: Oval-shaped-hole photonic crystal waveguide design by MoMIR framework. IEEE Photonics Technol. Lett. 26, 2446–2449 (2014)

    Google Scholar 

  61. Mirjalili, S.M., Mirjalili, S.Z.: Asymmetric oval-shaped-hole photonic crystal waveguide design by artificial intelligence optimizers. IEEE J. Sel. Top. Quantum Electron. 22, 4900407 (2016)

    Google Scholar 

  62. Mirjalili, S.M., Mirjalili, S., Mirjalili, S.Z.: How to design photonic crystal LEDs with artificial intelligence techniques. Electron. Lett. 51, 1437–1439 (2015)

    Google Scholar 

  63. Saremi, S., Mirjalili, S.M., Mirjalili, S.: Unit cell topology optimization of line defect photonic crystal waveguide. Procedia Technol. 12, 174–179 (2014)

    Google Scholar 

  64. Djavid, M., Mirtaheri, S.A., Abrishamian, M.S.: Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. JOSA B. 26, 849–853 (2009)

    Google Scholar 

  65. Jiang, L., Wu, H., Jia, W., Li, X.: Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Opt. J. Light Electron Opt. 124, 1721–1725 (2013)

    Google Scholar 

  66. Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback. Opt. Express 17, 8983–8997 (2009)

    Google Scholar 

  67. Fasihi, K.: High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. J. Light. Technol. 32, 3126–3131 (2014)

    Google Scholar 

  68. Fasihi, K.: Photonic crystal wavelength-selective attenuators: design and modeling. Photonics Nanostructures Fundam. Appl. 10, 470–477 (2012)

    Google Scholar 

  69. Karalis, A., Joannopoulos, J.D.: Temporal coupled-mode theory model for resonant near-field thermophotovoltaics. Appl. Phys. Lett. 107, 141108 (2015)

    Google Scholar 

  70. Zhuang, Y., Ji, K., Zhou, W., Chen, H.: Design of a DWDM multi/demultiplexer based on 2-D photonic crystals. IEEE Photonics Technol. Lett. 28, 1669–1672 (2016)

    Google Scholar 

  71. Yu, F., Wang, Y., Wang, Z., Zheng, Q., Zhou, M., Guo, D., Ding, X., Xu, X., Wang, L., Chen, H.: Temporal coupled-mode theory and the combined effect of dual orthogonal resonant modes in microstrip bandpass filters. IEEE Trans. Microw. Theory Tech. 63, 403–413 (2015)

    Google Scholar 

  72. Saleh, B.E.A., Teich, M.C., Saleh, B.E.: Fundamentals of photonics. Wiley, New York (1991)

    Google Scholar 

  73. Joannopoulos, J.J.D., Johnson, S., Winn, J.N.J., Meade, R.R.D.: Photonic crystals: molding the flow of light (2008)

  74. Kanamori, Y., Takahashi, K., Hane, K.: An ultrasmall wavelength-selective channel drop switch using a nanomechanical photonic crystal nanocavity. Appl. Phys. Lett. 95, 171911 (2009)

    Google Scholar 

  75. Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Phys. E Low Dimensional Syst. Nanostructures 40, 3151–3154 (2008)

    Google Scholar 

  76. Rabus, D.G.: Ring resonators: theory and modeling. In: Integrated Ring Resonators: The Compendium, pp. 3–40 (2007)

  77. Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)

    Google Scholar 

  78. Rezaee, S., Zavvari, M., Alipour-Banaei, H.: A novel optical filter based on H-shape photonic crystal ring resonators. Opt. J. Light Electron Opt. 126, 2535–2538 (2015)

    Google Scholar 

  79. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low Dimens. Syst. Nanostructures 87, 77–83 (2017)

    Google Scholar 

  80. Xu, H., Zhong, R., Wang, X., Huang, X.: Dual-wavelength filters based on two-dimensional photonic crystal degenerate modes with a ring dielectric rod inside the defect cavity. Appl. Opt. 54, 4534–4541 (2015)

    Google Scholar 

  81. Chen, C.-P., Kamiji, Y., Oda, J., Nagaoka, N., Anada, T., Takeda, S.: A novel bandpass filter using higher-order degenerate modes of planar photonic crystal microcavity in terahertz regime. In: Microwave Integrated Circuits Conference (EuMIC), 2012 7th European. pp. 806–809. IEEE (2012)

  82. Tao, K., Xiao, J., Yin, X., Tao, K., Xiao, J., Yin, X.: Nonreciprocal photonic crystal add-drop filter. Appl. Phys. Lett. 105, 211105 (2014). https://doi.org/10.1063/1.4902868

    Article  Google Scholar 

  83. Woltman, S.J., Jay, G.D., Crawford, G.P.: Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007)

    Google Scholar 

  84. Gat, N.: Imaging spectroscopy using tunable filters: a review. In: Wavelet Applications VII. pp. 50–65. International Society for Optics and Photonics (2000)

  85. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostructures 56, 211–215 (2014)

    Google Scholar 

  86. Jiang, J., Qiang, Z., Zhang, H., Zheng, Y., Qiu, Y.: A high-drop hole-type photonic crystal add-drop filter. Optoelectron. Lett. 10, 34–37 (2014)

    Google Scholar 

  87. Almasian, M.R., Abedi, K.: Performance improvement of wavelength division multiplexing based on photonic crystal ring resonator. Opt. J. Light Electron Opt. 126, 2612–2615 (2015)

    Google Scholar 

  88. Robinson, S., Nakkeeran, R.: Performance evaluation of PCRR based Add drop filter with different Rod shapes. J. Microw. Optoelectron. Electromagn. Appl. 11, 26–38 (2012). https://doi.org/10.1590/S2179-10742012000100003

    Article  Google Scholar 

  89. Robinson, S., Nakkeeran, R.: Investigation on parameters affecting the performance of two dimensional photonic crystal based bandpass filter. Opt. Quantum Electron. 43, 69–82 (2012)

    Google Scholar 

  90. Mahmoud, M.Y., Bassou, G., de Fornel, F., Taalbi, A.: Channel drop filter for CWDM systems. Opt. Commun. 306, 179–184 (2013)

    Google Scholar 

  91. Ma, Z., Ogusu, K.: Channel drop filters using photonic crystal Fabry-Perot resonators. Opt. Commun. 284, 1192–1196 (2011)

    Google Scholar 

  92. Almasian, M.R., Abedi, K.: A proposal for optical WDM using embedded photonic crystal ring resonator with distributed coupling. Phys. E Low Dimens. Syst. Nanostructures 79, 173–179 (2016)

    Google Scholar 

  93. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filters based on fractal structures. Phys. E Low Dimens. Syst. Nanostructures 63, 304–310 (2014)

    Google Scholar 

  94. Robinson, S., Nakkeeran, R.: Characteristics of add drop filter using single and dual PCRR in square lattice. Opt. J. Light Electron Opt. 124, 5918–5922 (2013)

    Google Scholar 

  95. Rashki, Z., Chabok, S.J.S.M.: Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt. Commun. 395, 231–235 (2017)

    Google Scholar 

  96. Takahashi, Y., Asano, T., Yamashita, D., Noda, S.: Ultra-compact 32-channel drop filter with 100 GHz spacing. Opt. Express 22, 4692–4698 (2014)

    Google Scholar 

  97. Wu, Y.-D., Shih, T.-T., Lee, J.-J.: High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications. Appl. Opt. 48, F24–F30 (2009)

    Google Scholar 

  98. Ho, C.P., Li, B., Danner, A.J., Lee, C.: Design and modeling of 2-D photonic crystals based hexagonal triple-nano-ring resonators as biosensors. Microsyst. Technol. 19, 53–60 (2013)

    Google Scholar 

  99. Sheikhaleh, A., Abedi, K., Jafari, K.: An optical MEMS accelerometer based on a two dimensional photonic crystal add-drop filter. J. Light. Technol. 35, 3029–3034 (2017)

    Google Scholar 

  100. Li, B., Hsiao, F.-L., Lee, C.: Computational characterization of a photonic crystal cantilever sensor using a hexagonal dual-nanoring-based channel drop filter. IEEE Trans. Nanotechnol. 10, 789–796 (2011)

    Google Scholar 

  101. Li, B., Hsiao, F.-L., Lee, C.: Configuration analysis of sensing element for photonic crystal based NEMS cantilever using dual nano-ring resonator. Sens. Actuators A Phys. 169, 352–361 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Bazian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazian, M. Photonic crystal add–drop filter: a review on principles and applications. Photon Netw Commun 41, 57–77 (2021). https://doi.org/10.1007/s11107-020-00907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00907-7

Keywords

Navigation