Skip to main content

Theoretical bounds for the bit error rate for SAC OCDMA balanced detectors with multiple photodiodes

Abstract

In this paper, we derive the theoretical lower and upper bounds for bit error rate (BER) for spectral amplitude coding OCDMA balanced detector (BD) employing multiple photodiodes. The purpose of this study is to find the maximum performance improvement that can be achieved when a multi-photodiode structure is used to reduce the intensity noise. Results show that when the split signals are independent, the lower bound for the BER is much lower than it is for the conventional BD. To further validate our study, Monte Carlo simulation and software simulation using Optisystem were performed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ghafouri-Shiraz, H., Karbassian, M.: Optical CDMA networks: principles, analysis and applications. Wiley, West Sussex (2012)

    Book  Google Scholar 

  2. Zaccarin, D., Member, S., Kavehrad, M.: An optical CDMA system based on spectral encoding of LED. IEEE Photon Technol Lett 4, 479–482 (1993)

    Article  Google Scholar 

  3. Kavehrad, M., Zaccarin, D.: Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources. IEEE J Light Technol 13, 534–545 (1995)

    Article  Google Scholar 

  4. Alhassan, A.M., Saad, N.M., Aljunid, S.A.: Implementation of a passive optical network using coherent source spatial multiplexed SAC OCDMA. Sixth Int Conf Intell Adv Syst 2016, 1–4 (2016). https://doi.org/10.1109/ICIAS.2016.7824082

    Article  Google Scholar 

  5. Moghaddasi, M., Mamdoohi, G., Muhammad Noor, A.S., Mahdi, M.A., Ahmad Anas, S.B.: Development of SAC-OCDMA in FSO with multi-wavelength laser source. Opt Commun 356, 282–289 (2015). https://doi.org/10.1016/j.optcom.2015.07.075

    Article  Google Scholar 

  6. Aldhaibani, A.O., Aljunid, S.A., Anuar, M.S., Arief, A.R., Rashidi, C.B.M.: Development of OCDMA system based on Flexible Cross Correlation (FCC) code with OFDM modulation. Opt Fiber Technol 22, 7–12 (2015). https://doi.org/10.1016/j.yofte.2014.11.012

    Article  Google Scholar 

  7. Goodman, J.W.: Statistical optics. Wiley, New York (2000)

    Google Scholar 

  8. Penon, J., Mathlouthi, W., LaRochelle, S., Rusch, L.A.: An Innovative Receiver for Incoherent SAC-OCDMA Enabling SOA-Based Noise Cleaning: Experimental Validation. J. Light. Technol. 27, 108–116 (2009)

    Article  Google Scholar 

  9. Lin, C., Wu, J., Tsao, H., Yang, C.: Spectral amplitude-coding optical CDMA system using Mach-Zehnder interferometers. J Light Technol 23, 1543–1555 (2005). https://doi.org/10.1109/JLT.2005.844205

    Article  Google Scholar 

  10. Huang, J.-F.: Phase noise suppression in multilevel optical code-division multiple-access network coding system with embedded orthogonal polarizations. Opt Eng 45, 065005 (2006)

    Article  Google Scholar 

  11. Penon, J., El-Sahn, Z.A., Rusch, L.A., LaRochelle, S.: Spectral-amplitude-coded OCDMA optimized for a realistic FBG frequency response. J Light Technol 25, 1256–1263 (2007)

    Article  Google Scholar 

  12. Alhassan, A.M., Saad, N.M., Badruddin, N.: An enhanced detection technique for spectral amplitude coding optical CDMA systems. IEEE Photon Technol Lett 23, 875–877 (2011)

    Article  Google Scholar 

  13. Selmy, H., Shalaby, H.M.H., Kawasaki, Z.: Performance analysis of gradual multi-pulse pulse-position modulation in deep-space optical communications. J Opt Commun Netw 4, 812 (2012)

    Article  Google Scholar 

  14. Alhassan, A.M., Badruddin, N., Saad, N.M., Aljunid, S.A.: A divided spectrum balanced detection technique for intensity noise reduction in SAC OCDMA systems. Opt Int J Light Electron Opt 124, 5994–5999 (2013)

    Article  Google Scholar 

  15. Nawawi, N.M., Anuar, M.S., Junita, M.N.: Cardinality improvement of zero cross correlation (ZCC) code for OCDMA visible light communication system utilizing catenated-OFDM modulation scheme. Opt Int J Light Electron Opt 170, 220–225 (2018). https://doi.org/10.1016/j.ijleo.2018.05.125

    Article  Google Scholar 

  16. Imtiaz, W.A., Ahmed, H.Y., Zeghid, M., Sharief, Y.: Two dimensional optimized enhanced multi diagonal code for OCDMA passive optical networks. Opt Quantum Electron 52, 33 (2019)

    Article  Google Scholar 

  17. Imtiaz, W.A., Ahmed, H.Y., Zeghid, M., Sharief, Y.: An optimized architecture to reduce the impact of fiber strands in spectral/spatial optical code division multiple access passive optical networks (OCDMA-PON). Opt Fiber Technol 54, 102072 (2020)

    Article  Google Scholar 

  18. Shalaby, H.M.H.: Comments on “an enhanced detection technique for spectral amplitude coding optical CDMA systems”. IEEE Photon Technol Lett 24, 1356–1357 (2012)

    Article  Google Scholar 

  19. Alhassan, A.M., Saad, N.M., Badruddin, N.: Author’s reply. IEEE Photon Technol Lett 24, 1358 (2012). https://doi.org/10.1109/LPT.2012.2203209

    Article  Google Scholar 

  20. Alhassan AM, Badruddin N, Saad NM, Aljunid SA (2014) Upper and lower bounds for the bit error rate for multiple photodiode balanced detectors in SAC OCDMA systems. In The 5th international conference on artificial intelligence and robots (ICIAS 2014), pp 1–5

  21. Williams, K.J., Esman, R.D.: Optically amplified downconverting link with shot-noise-limited performance. IEEE Photon Technol Lett 8, 148–150 (1996)

    Article  Google Scholar 

  22. Wei, Z.W.Z., Shalaby, H.M.H., Ghafouri-Shiraz, H.: Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems. J Light Technol 19, 1274–1281 (2001)

    Article  Google Scholar 

  23. Papoulis, A., Pillai, S.U.: Probability, random variables, and stochastic processes. McGraw-Hill, New York (2002)

    Google Scholar 

  24. Noshad, M., Jamshidi, K.: Bounds for the BER of codes with fixed cross correlation in SAC-OCDMA systems. J Light Technol 29, 1944–1950 (2011)

    Article  Google Scholar 

  25. Shalaby, H.M.H.: Closed-form expression for the bit-error rate of spectral-amplitude-coding optical CDMA systems. IEEE Photon Technol Lett 24, 1285–1287 (2012)

    Article  Google Scholar 

  26. Rochette, M., Ayotte, S., Rusch, L.A.: Analysis of the spectral efficiency of frequency-encoded OCDMA systems with incoherent sources. J Light Technol 23, 1610–1619 (2005)

    Article  Google Scholar 

  27. Wei, Z., Ghafouri-Shiraz, H.: Codes for spectral-amplitude-coding optical CDMA systems. J Light Technol 20, 1284–1291 (2002)

    Article  Google Scholar 

  28. Aljunid, S.A., Ismail, M., Ramli, A.R., Ali, B.M., Abdullah, M.K.: A new family of optical code sequences for spectral-amplitude-coding optical CDMA systems. IEEE Photon Technol Lett 16, 2383–2385 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Alhassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alhassan, A.M., Badruddin, N., Saad, N.M. et al. Theoretical bounds for the bit error rate for SAC OCDMA balanced detectors with multiple photodiodes. Photon Netw Commun 40, 49–57 (2020). https://doi.org/10.1007/s11107-020-00887-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00887-8

Keywords

  • Optical code division multiple access (OCDMA)
  • Spectral amplitude coding (SAC) OCDMA
  • Balanced detector
  • Multi-photodiode balanced detector