Skip to main content
Log in

A survey on high-precision time synchronization techniques for optical datacenter networks and a zero-overhead microsecond-accuracy solution

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A datacenter, which is a highly distributed multiprocessing system, needs to keep accurate track of time across a large number of machines. Precise time synchronization has become a critical component due to stringent requirements of several time critical applications such as real-time big data analytics, high-performance computing, and financial trading. Our study starts with a survey on the most relevant time synchronization techniques for datacenter networks. Then, we propose a zero-overhead microsecond-accuracy solution to synchronize a packet-switched optical network for datacenters. To achieve the desired time accuracy, we consider precision time protocol to synchronize the server clocks with a central controller clock. Zero-overhead is maintained by using data traffic to carry the time messages instead of a separate control channel. Through simulation, we show that microsecond level of time accuracy can be achieved. We also discuss the dependency of the accuracy on different traffic loads, traffic distributions, and packet lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans. Commun. 39(10), 1482–1493 (1991)

    Article  Google Scholar 

  2. Correll, K., Barendt, N., Branicky, M.: Design considerations for software only implementations of the IEEE 1588 precision time protocol. Conf. IEEE 1588, 11–15 (2005)

    Google Scholar 

  3. Wang, L., Wang, X., Kim, K.J., Kim, S.M., Kim, D.U., Han, K.E., Mukherjee, B.: Priority-aware scheduling for packet-switched optical networks in datacenter. In: Proceedings of the IEEE International Conference on Optical Network Design and Modeling (2017)

  4. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  5. Marouani, H., Dagenais, M.R.: Internal clock drift estimation in computer clusters. J. Comput. Syst. Netw. Commun. 2008, 583162 (2008). https://doi.org/10.1155/2008/583162

    Google Scholar 

  6. https://cacm.acm.org/magazines/2016/1/195723-time-is-an-illusion-lunchtime-doubly-so/fulltext. Accessed 24 June 2017 (2016)

  7. Lévesque, M., Tipper, D.: A survey of clock synchronization over packet-switched networks. IEEE Commun. Surv. Tutor. 18(4), 2926–2947 (2016)

    Article  Google Scholar 

  8. Sankaran, G.C., Sivalingam, K.M.: Time synchronization mechanisms for an optically groomed data center network. In: Proceedings of the International Performance Computing and Communications Conference (2016)

  9. Korreng, M.D.: UTC time transfer for high frequency trading using IS-95 CDMA base station transmissions and IEEE-1588 precision time protocol. In: Proceedings of the 42nd Annual Precise Time and Time Interval Systems and Applications Meeting, pp. 359–368 (2010)

  10. Mizrahi, T., Moses, Y.: Software defined networks: it’s about time. In: Proceedings of the IEEE International Conference on Computer Communications (2016)

  11. Index, Cisco Global Cloud: Forecast and Methodology, 2012–2017. Cisco Systems Inc, San Jose (2014)

    Google Scholar 

  12. Costa, P., Ballani, H., Razavi, K., Kash, I.: R2C2: A network stack for rack-scale computers. Proceedings of the ACM SIGCOMM, London (2015)

  13. McCarthy, D.D., Seidelmann, K.P.: Optical atomic standards. In: TIME from Earth Rotation to Atomic Physics, Ch. 11, pp. 181–186. Wiley-VCH, Weinheim (2009)

  14. Lewandowski, W., Azoubib, J., Klepczynski, J.W.: GPS: primary tool for time transfer. Proc. IEEE 87(1), 163–172 (1999)

    Article  Google Scholar 

  15. http://www.ptfinc.com/wp-content/uploads/2015/10/NTP-and-PTP-Time-Transfer-Part-2.pdf (2015). Accessed 24 June 2017

  16. Perry, J., Ousterhout, A., Balakrishnan, H., Shah, D., Fugal, H.: Fastpass: a centralized “Zero-Queue" datacenter network, pp. 307–318. In: Proceedings of the ACM SIGCOMM (2014)

  17. Lee, K.S., Wang, H., Shrivastav, V., Weatherspoon, H.: Globally synchronized time via datacenter networks. In: Proceedings of the ACM SIGCOMM, pp. 454–467 (2016)

  18. Levesque, M., Tipper, D.: PTP++: a precision time protocol simulation model for OMNeT++ / INET. In: Proceedings of the OMNeT++ Community Summit (2015)

  19. Liu, Y., Yang, C.: OMNeT++ based modeling and simulation of the IEEE 1588 PTP clock. In: Proceedings of the International Conference on Electrical and Control Engineering (2011)

  20. Wallner, W., Wasicek, A., Grosu, R.: A simulation framework for IEEE 1588. In: Proceedings of the International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS) (2016)

  21. Watt, S.T., Achanta, S., Abubakari, H., Sagen, E., Korkmaz, Z., Ahmed, H.: Understanding and applying precision time protocol. In: Proceedings of the Power and Energy Automation Conference (2014)

  22. Yang, H., Zhang, J., Ji, Y., Lee, Y.: C-RoFN: multi-stratum resources optimization for cloud-based radio over optical fiber networks. IEEE Commun. Mag. 54(8), 118–125 (2016)

    Article  Google Scholar 

  23. Kandula, S. et al.: The nature of datacenter traffic: measurements and analysis. In: Proceedings of the 9th ACM SIGCOMM Internet Measurement Conference, pp. 202–208 (2009)

  24. Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social network’s (datacenter) network. In: Proceedings of the ACM SIGCOMM, pp. 123–137(2015)

  25. Benson, T. et al.: Understanding data center traffic characteristics. In: Proceedings of the ACM SIGCOMM, pp. 92–99 (2010)

  26. Ersoz, D., Yousif, M.S., Das, C.R.: Characterizing network traffic in a cluster-based, multi-tier data center. In: Proceedings of the 27th International Conference on Distributed Computing Systems (2007)

  27. http://www.cisco.com/c/en/us/td/docs/switches/lan/cisco_ie3000/software/release/12-2_52_se/configuration/guide/ie3000scg/swptp.pdf. Accessed 24 June 2017

  28. IEEE 1588 PTP on Cisco Nexus 3100 Platform and 9000 Series Switches, White Paper, Cisco, March 6 (2015)

  29. https://www.arista.com/assets/data/pdf/Whitepapers/Technical_Solution_Guide_Precision_Time_Protocol.pdf. Accessed 9 Nov 2017

Download references

Acknowledgements

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) [B0117-16-1008, Development of Data Center Optical Networking Core Technologies for Photonic Frame based Packet Switching].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanjila Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, T., Rahman, S., Tornatore, M. et al. A survey on high-precision time synchronization techniques for optical datacenter networks and a zero-overhead microsecond-accuracy solution. Photon Netw Commun 36, 56–67 (2018). https://doi.org/10.1007/s11107-018-0773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0773-9

Keywords

Navigation