Skip to main content
Log in

PIN photodiode array for free-space optical communication

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

For space optical communication, spatial light is coupled to an optical fiber, after which it is converted into electrical signals with a PIN photodiode to achieve the purpose of communication. Thus, we propose to use a PIN array to receive the spatial light directly. In the new design, each PIN photodiode independently receives the space laser and converts it into electrical signals. Therefore, the coupling of light-into-fiber is not necessary. Later, the current and voltage characteristics of both series and parallel PIN array are analyzed and numerical simulations are carried out. After that, with the help of the technicians of Chengdu SEI Optical Fiber Corporation, a \(3\times 3\) PIN diode array was produced successfully in the laboratory and a test experiment in a microvibration environment was done, the results of which show the coupling efficiency of the new receiver is higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan, L., Zhai, C., Siyuan, Y., et al.: Fiber-coupling efficiency for optical wave propagating through non-Kolmogorov turbulence. Opt. Commun. 331(15), 291–296 (2014)

    Article  Google Scholar 

  2. Dikmelik, Y., Davidson, F.M.: Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence. Appl. Opt. 44(23), 4946–4952 (2005)

    Article  Google Scholar 

  3. Zhun, X., Yong, A., Xin, S., et al.: Fiber coupling efficiency and compensation analysis for free space optical communication. Infrared Laser Eng. 42(9), 2510–2514 (2013). (in Chinese)

    Google Scholar 

  4. Liqiang, H., Zhibin, W.: Fiber coupling efficiency and Strehl ratio for space optical communication based on adaptive optics correction. Infrared Laser Eng. 42(1), 125–129 (2013). (in Chinese)

    Google Scholar 

  5. Liying, T., Yang Qingbo, Y., Yu, S.: Statistical distribution of fiber-coupling efficiency in the satellite-to-ground downlink. Opt. Eng. 50(10), 105001-1–105001-4 (2011)

    Google Scholar 

  6. Zheng-rong, T.O.N.G., Wei, H.A.N., Ye, C.A.O.: Fiber sensor for simultaneous measurement of temperature and refraction index based on multi mode fiber core-offset. Acta Opt. Sin. 34(1), 0106004 (2014)

    Article  Google Scholar 

  7. Chan, V.W.S.: Optical space communications. IEEE J. Sel. Top. Quantum Electron. 6(6), 959–975 (2000)

    Article  Google Scholar 

  8. Yamakawa, S., Hanada, T., Kohata, H.: R&D status of the next generation optical communication terminals in JAXA. In: International Conference on Space Optical Systems and Applications (ICSOS), pp. 389-393 (2011)

  9. Li, J.H., Huang, X.X., Ji, X.M., et al.: An integrated PIN-array receiver for visible light communication. J. Opt. 17(10), 105805 (2015)

    Article  Google Scholar 

  10. Ao, J., Liang, J., Ma, C.: Optimization of LDPC codes for PIN-based OOK FSO communication systems. IEEE Photonics Technol. Lett. 29(9), 727–730 (2017)

    Article  Google Scholar 

  11. Huang, X., Wang, Z., Shi, J., Wang, Y.: 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Opt. Express 23(17), 22034–22042 (2015)

    Article  Google Scholar 

  12. Weyrauch, T., Vorontson, M., Gowens, J., et al.: Fiber coupling with the adaptive optics for free-space optical communication. SPIE 448(9), 177–184 (2002)

    Google Scholar 

  13. Takenaka, H., Toyoshima, M., Takayama, Y.: The experimental verification of fiber-coupling efficiency for satellite-to-ground atmospheric laser downlinks. Opt. Express 20(14), 15301–15308 (2012)

    Article  Google Scholar 

  14. Prabu, K., Kumar, D.S.: MIMO free-space optical communication employing coherent BPOLSK modulation in atmospheric optical turbulence channel with pointing errors’. Opt. Commun. 343(1), 188–194 (2015)

    Article  Google Scholar 

  15. Zhai, Y.C., Wu, Q., Tan, J.J., et al.: Simulation and structure analysis of reconfigurable solid plasma channel based on SPINs. Microelectron. Eng. 145, 49 (2015)

    Article  Google Scholar 

  16. Yashchyshyn, Y., Derzakowski, K., Bajurko, P.R., et al.: Time-modulated reconfigurable antenna based on integrated S-PIN diodes for mm-wave communication systems. IEEE Trans. 63(9), 4122 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ping, L., Tao, L., Shangyan, D., et al.: Anneal treatment to improve the performance of extended wavelength In0.83Ga0.17As photodetectors. Infrared Phys. Technol. 71, 140–143 (2015)

    Article  Google Scholar 

  18. Grabner, M., Kvicera, V.: Multiple scattering in rain and fog on free-space optical links. J. Lightwave Technol. 32(3), 513–520 (2014)

    Article  Google Scholar 

  19. Koziratskii, A.Y., Prokhorov, D.V., Lysikov, V.F.: A mathematical model of two-stage search of receiving channels in a laser communication line when establishing communication in conditions of interference. Telecommun. Radio Eng. 67(14), 1281–1293 (2008)

    Article  Google Scholar 

  20. Bingcheng, Z., Julian, C., Lenan, W.: A distance-dependent free-space optical cooperative communication system. IEEE Commun. Lett. 19(6), 969–972 (2015)

    Article  Google Scholar 

  21. Duc Nguyen, V., Faber, D.J., van der Pol, E., et al.: Dependent and multiple scattering in transmission and backscattering optical coherence tomography. Virtual J. Biomed. Opt. 9(2), 29145–29156 (2013)

    Google Scholar 

  22. Menghao, H.U.A.N.G., Jianbin, F.U., Shilong, P.A.N.: Linearized analog photonic links based on a dual-parallel polarization modulator. Opt. Lett. (S0146-9592) 37(11), 1823–1825 (2012)

    Article  Google Scholar 

  23. AGARWAL, A., BANWELL, T., Woodward, T.K.: Optically filtered microwave photonic links for RF signal processing applications. J. Lightwave Technol. (S0733-8724) 29(16), 2394–2401 (2011)

    Article  Google Scholar 

  24. Wei, L.I., Xian, W.A.N.G., Hua, Z.H.U.: Highly linear microwave photonic link using a polarization modulator in a sagnac loop. IEEE Photonics Technol. Lett. (S1041-1135) 26(1), 89–92 (2014)

    Article  Google Scholar 

  25. Weilin, L.I.U., Muguang, W.A.N.G., Jianping, Y.A.O.: Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator. J. Lightwave Technol. (S0733-8724) 31(10), 1636–1644 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author HU Qinggui acknowledges the financial support from The National Natural Science Foundation of China (Grant No. 61275080); 2017 Jilin Province Science and Technology Development Plan-Science and Technology Innovation Fund for Small and Medium Enterprises (20170308029HJ); "thirteen five" science and technology research project of the Department of Education of Jilin 2016 (16JK009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. U. Qinggui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qinggui, H.U., Yining, M.U. PIN photodiode array for free-space optical communication. Photon Netw Commun 36, 224–229 (2018). https://doi.org/10.1007/s11107-018-0772-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0772-x

Keywords

Navigation