Skip to main content
Log in

An algorithm of virtual network mapping for underwater wireless optical networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, a node mapping algorithm, called the radiant node mapping (RNM) algorithm, which is applicable to underwater wireless optical network, is proposed. The RNM algorithm can reduce the distances among mapped nodes, save the resource of links, raise the number of mapped virtual networks, and increase the rate of network utilization. Then, two virtual network embedding algorithms are designed, which are the network mapping algorithm insensitive to the quality of channel (LRC-RNM-QCI) and the network mapping algorithm sensitive to the quality of channel (LRC-RNM-QCS) on the basis of the layered-resource capacity and the RNM algorithm. It is revealed through simulation experiments that both algorithms can significantly improve the success rate of virtual network mapping compared with existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heidemann, J., Stojanovic, M., Zorzi, M.: Underwater sensor networks: applications, advances and challenges. Philos. Trans. R. Soc. A 370(1958), 158–175 (2012)

    Article  Google Scholar 

  2. Sozer, E.M., Stojanovic, M., Proakis, J.G.: Underwater acoustic networks. IEEE J. Ocean. Eng. 25(1), 72–83 (2000)

    Article  Google Scholar 

  3. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 3(3), 257–279 (2005)

    Article  Google Scholar 

  4. Cui, J.H., Kong, J., Gerla, M., Zhou, S.: The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Netw. 20(3), 12–18 (2006)

    Article  Google Scholar 

  5. Nam, H., An, S.: Energy-efficient routing protocol in underwater acoustic sensor networks. In: Embedded and Ubiquitous Computing, pp. 663–669 (2008)

  6. Pontbriand, C., Farr, N., Hansen, J., Kinsey, J.C., Pelletier, L.P., Ware, J., Fourie, D.: Wireless data harvesting using the AUV Sentry and WHOI optical modem. In: OCEANS, pp. 1–6 (2015)

  7. Channegowda, M., Nejabati, R., Simeonidou, D.: Software-defined optical networks technology and infrastructure: enabling software-defined optical network operations. J. Opt. Commun. Netw. 5(10), A274–A282 (2013)

    Article  Google Scholar 

  8. Collings, B.: New devices enabling software-defined optical networks. IEEE Commun. Mag. 51(3), 66–71 (2013)

    Article  Google Scholar 

  9. Bhaumik, P., Zhang, S., Chowdhury, P., Lee, S.S., Lee, J.H., Mukherjee, B.: Software-defined optical networks (SDONs): a survey. Photon. Netw. Commun. 28(1), 4–18 (2014)

    Article  Google Scholar 

  10. Chowdhury, N.M.K., Boutaba, R.: Network virtualization: state of the art and research challenges. IEEE Commun. Mag. 47(7), 20–26 (2009)

    Article  Google Scholar 

  11. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Compu. Netw. 54(5), 862–876 (2010)

    Article  MATH  Google Scholar 

  12. Bari, M.F., Boutaba, R., Esteves, R., et al.: Data center network virtualization: a survey. IEEE Commun. Surv. Tutor. 15(2), 909–928 (2013)

    Article  Google Scholar 

  13. Shahriar, N., Ahmed, R., Chowdhury, S., et al.: Generalized recovery from node failure in virtual network embedding. IEEE Trans. Netw. Serv. Manag. 14(2), 261–274 (2017)

    Article  Google Scholar 

  14. Zhu, Y., Ammar, M.H.: Algorithms for assigning substrate network resources to virtual network components. In: INFOCOM, pp. 1–12. (2006)

  15. Razzaq, A., Rathore, M.S.: An approach towards resource efficient virtual network embedding. In: IEEE 2010 Second International Conference on, Evolving Internet (INTERNET), pp. 68–73 (2010)

  16. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding: substrate support for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008)

    Article  Google Scholar 

  17. Pages, A., Perello, J., Spadaro, S., Junyent, G.: Strategies for virtual optical network allocation. IEEE Commun. Lett. 16(2), 268–271 (2012)

    Article  Google Scholar 

  18. Gong, L., Zhu, Z.: Virtual optical network embedding (VONE) over elastic optical networks. J. Lightwave Technol. 32(3), 450–460 (2014)

    Article  MathSciNet  Google Scholar 

  19. Akyildiz, I.F., Wang, P., Lin, S.C.: SoftWater: software-defined networking for next-generation underwater communication systems. Ad Hoc Netw. 46(1), 1–11 (2016)

    Article  Google Scholar 

  20. Gabriel, C., Khalighi, M.A., Bourennane, S., et al.: Monte–Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 5(1), 1–12 (2013)

    Article  Google Scholar 

  21. Liu, W., Zou, D., Wang, P., et al.: Wavelength dependent channel characterization for underwater optical wireless communications. In: International Conference on Signal Processing, Communications and Computing (ICSPCC), IEEE, pp. 895–899 (2014)

  22. Haltrin, V.I.: Chlorophyll-based model of seawater optical properties. Appl. Opt. 38(33), 6826–6832 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxi Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yin, H., Xing, F. et al. An algorithm of virtual network mapping for underwater wireless optical networks. Photon Netw Commun 36, 35–42 (2018). https://doi.org/10.1007/s11107-018-0768-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0768-6

Keywords

Navigation