Photonic Network Communications

, Volume 36, Issue 1, pp 26–34 | Cite as

Proactive defragmentation in elastic optical networks under dynamic load conditions

  • Jaume Comellas
  • Laura Vicario
  • Gabriel Junyent
Original Paper


The main weakness of elastic optical networks (EON), under dynamic traffic conditions, stems from spectrum fragmentation. A lot of research efforts have been dedicated during recent years to spectrum defragmentation. In this work, a thorough study about proactive defragmentation is carried out. Effects of the different defragmentation parameters on the EON performance are analyzed, and appropriate values of the defragmentation period, which guarantee suitable network performance while keeping the network control complexity at reasonable values, are obtained by means of extensive simulations. Benefit obtained by applying different defragmentation strategies, in terms of increase in the supported load at a given bandwidth blocking probability, is also reported. Different traffic conditions and network topologies are simulated to assess the validity of the obtained results.


Elastic optical networks Network performance Spectrum defragmentation Bandwidth blocking probability 



This work was partially supported by the EC through the METRO-HAUL project (G.A. 761727), and from the Spanish MINECO TWINS project (TEC2017-90097-R).


  1. 1.
    Gerstel, O., Jinno, M., Lord, A., Yoo, B.: Elastic optical networking: a new dawn for the optical layer. IEEE Commun. Mag. 50(2), s12–s20 (2012)CrossRefGoogle Scholar
  2. 2.
    Shi, W., Zhu, Z., Zhang, M., Ansari, N.: On the effect of bandwidth fragmentation on blocking probability in elastic optical networks. IEEE Trans. Commun. 61(7), 2970–2978 (2013)CrossRefGoogle Scholar
  3. 3.
    Wang, R., Mukherjee, B.: Provisioning in elastic optical networks with non-disruptive defragmentation. J. Lightw. Technol. 31(15), 2491–2500 (2013)CrossRefGoogle Scholar
  4. 4.
    Yin, Y., Wen, K., Geisler, D.J., Liu, R., Yoo, S.J.B.: Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks. Opt. Express 20, 1798–1804 (2012)CrossRefGoogle Scholar
  5. 5.
    Patel, A.N., Ji, P.N., Jue, J.P., Wang, T.: Defragmentation of transparent flexible optical WDM (FWDM) networks. In: Proceedings of OFC 2011, paper OTuI8 (2011)Google Scholar
  6. 6.
    Yin, Y., Zhang, M., Zhu, Z., Yoo, S.J.B.: Fragmentation-aware routing, modulation and spectrum assignment algorithms in elastic optical networks. In: Proceedings of OFC 2013, paper OW3A.5 (2013)Google Scholar
  7. 7.
    Chen, X., Ma, S., Guo, B., Wang, Y., Li, J., Chen, Z., He, Y.: A novel fragmentation-aware spectrum allocation algorithm in flexible bandwidth optical networks. Opt. Switch. Netw. 12, 14–23 (2014)CrossRefGoogle Scholar
  8. 8.
    Singh, S.K., Jukan, A.: Efficient spectrum defragmentation with holding-time awareness in elastic optical networks. J. Opt. Commun. Netw. 9(3), B78–B89 (2017)CrossRefGoogle Scholar
  9. 9.
    Pagès, A., Perelló, J., Spadaro, S., Comellas, J.: Optimal route, spectrum, and modulation level assignment in split-spectrum-enabled dynamic elastic optical networks. J. Opt. Commun. Netw. 6(2), 114–126 (2014)CrossRefGoogle Scholar
  10. 10.
    Wang, R., Mukherjee, B.: Spectrum management in heterogeneous bandwidth networks. In: Proceedings of IEEE GLOBECOM 2012, pp. 2907–2911 (2012)Google Scholar
  11. 11.
    Chatterjee, B.C., Ba, S., Oki, E.: Fragmentation problems and management approaches in elastic optical networks: a survey. IEEE Commun. Surv. Tutor. 20(1), 183–210 (2018)CrossRefGoogle Scholar
  12. 12.
    Takagi, T., Hasegawa, H., Sato, K., Sone, Y., Hirano, A., Jinno, M., et al.: Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation. In: Proceedings of ECOC 2011, pp. 1–3 (2011)Google Scholar
  13. 13.
    Zhang, M., Shi, W., Gong, L., Lu, W., Zhu, Z.: Bandwidth defragmentation in dynamic elastic optical networks with minimum traffic disruptions. In: Proceedings of IEEE International Conference on Communications, ICC (2013)Google Scholar
  14. 14.
    Zhang, M., You, C., Zhu, Z.: On the parallelization of spectrum defragmentation reconfigurations in elastic optical networks. IEEE/ACM Trans. Netw. 24(5), 2819–2833 (2016)CrossRefGoogle Scholar
  15. 15.
    Beyranvand, H., Maier, M., Salehi, J.A.: An analytical framework for the performance evaluation of node- and network-wise operation scenarios in elastic optical networks. IEEE Trans. Commun. 62(5), 1621–1633 (2014)CrossRefGoogle Scholar
  16. 16.
    Comellas, J., Junyent, G.: Improving link spectrum utilization in Flexgrid optical networks. J. Opt. Commun. Netw. 7(7), 618–627 (2015)CrossRefGoogle Scholar
  17. 17.
    Comellas, J., Vicario, L., Junyent, G.: Using static connections to improve elastic optical networks performance. In: OSA Advanced Photonics Congress, paper NeTu1B.5 (2017)Google Scholar
  18. 18.
    Wang, Y., Cao, X., Pan, Y.: A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks. In: Proceedings of INFOCOM, pp. 1503–1511 (2011)Google Scholar
  19. 19.
    Pagès, A., Agraz, F., Montero, R., Landi, G., Monno, R., Aznar, J.I., Viñés, A., Jackson, C., Simeonidou, D., Spadaro, S.: Experimental assessment of VDC provisioning in SDN/openstack-based DC infrastructures with optical DCN. In: Proceedings of the 42nd European conference on optical communication (2016)Google Scholar
  20. 20.
    Castro, A., Martínez, R., Casellas, R., Velasco, L., Muñoz, R., Vilalta, R., Comellas, J.: Experimental assessment of bulk path restoration in multi-layer networks using PCE-based global concurrent optimization. J. Lightw. Technol. 32(1), 81–90 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Optical Communications GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations