Photonic Network Communications

, Volume 35, Issue 2, pp 151–164 | Cite as

Towards efficiently migrating virtual networks in cloud-based data centers

Original Paper


With the expansion of cloud computing, virtual network (VN) migration becomes the very perspective technology for saving energy, ensuring Service Level Agreements or improving the survivability of virtual networks in cloud networks. At present, the majority of research on the VN migration, however, are for saving energy or improving resource utilizations, and few of them for the entire virtual network migration for guaranteeing QoS or improving the survivability of virtual networks. Since the regional failure, network maintenance or QoS violation, the service provider generally needs to migrate the VN for guaranteeing the QoS or improving the survivability of virtual networks. In the paper, we research the live migration problem of the virtual network to optimize the virtual network migration performance. To efficient migrate virtual network, we present an effective VN migration method, VNM. To control the cost of migration or migration traffic, based on the VNM algorithm, we present an effective VN migration method with migration traffic control, VNM-MTC. We use two networks as substrate networks to simulate the performances of our presented algorithms. From the experiment, we can see that the total VN reconfiguration cost, total VN redeployment cost, total VN migration cost and blocking ratio of our presented algorithms are better than that of the contrast algorithm.


Cloud computing Virtual networks Live migration 



This research was supported by the Fundamental Research Funds of China West Normal University (17D075).


  1. 1.
    Ma, C., Colman-Meixner, C., Tornatore, M., et al.: Multiple traveling repairmen problem with virtual networks for post-disaster resilience. In: IEEE ICC, pp. 1–6 (2016)Google Scholar
  2. 2.
    Sun, G., Anand, V., Liao, D., et al.: Power-efficient provisioning for online virtual network requests in cloud-based datacenters. IEEE Syst. J. 9(2), 427–441 (2015)CrossRefGoogle Scholar
  3. 3.
    Zhang, G., Yang, K., Wei, J., et al.: Virtual resource allocation for wireless virtualization networks using market equilibrium theory. In: IEEE INFOCOM, pp. 366–371 (2015)Google Scholar
  4. 4.
    Hao, F., Lakshman, T.V., Mukherjee, S., et al.: Enhancing dynamic cloud-based services using network virtualization. ACM SIGCOMM Comput. Commun. Rev. 40(1), 67–74 (2010)CrossRefGoogle Scholar
  5. 5.
    Sun, G., Liao, D., Bu, S., et al.: The efficient framework and algorithm for provisioning evolving VDC in federated data centers. Future Gener. Comput. Syst. 73, 79–89 (2017)CrossRefGoogle Scholar
  6. 6.
    Khan, M.M.A., Shahriar, N., Ahmed, R., et al.: Multi-path link embedding for survivability in virtual networks. IEEE Trans. Netw. Serv. Manag. 13(2), 253–266 (2016)CrossRefGoogle Scholar
  7. 7.
    Chochlidakis, G., Friderikos, V.: Mobility aware virtual network embedding. IEEE Trans. Mob. Comput. 16(5), 1343–1356 (2017)CrossRefGoogle Scholar
  8. 8.
    Sun, G., Yu, H., Anand, V., et al.: Optimal provisioning for virtual network request in cloud-based data centers. Photonic Netw. Commun. 24(2), 118–131 (2012)CrossRefGoogle Scholar
  9. 9.
    Sun, G., Yu, H., Li, L., et al.: Exploring online virtual networks mapping with stochastic bandwidth demand in multi-datacenter. Photonic Netw. Commun. 23(2), 109–122 (2012)CrossRefGoogle Scholar
  10. 10.
    Liao, D., Sun, G., Anand, V., et al.: Opportunistic provisioning for multicast virtual network requests. In: IEEE GLOBECOM, pp. 133–138 (2015)Google Scholar
  11. 11.
    Chowdhury, M., Raihan Rahman, M., Boutaba, R.: ViNEYard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. Netw. 1(20), 206–219 (2012)CrossRefGoogle Scholar
  12. 12.
    Wanis, B., Samaan, N., Karmouch, A.: Substrate Network House Cleaning via Live Virtual Network Migration. In: IEEE ICC, pp. 2256–2261 (2013)Google Scholar
  13. 13.
    Sun, G., Yu, H., Anand, V., et al.: A cost efficient framework and algorithm for embedding dynamic virtual network requests. Future Gener. Comput. Syst. 29(5), 1265–1277 (2013)CrossRefGoogle Scholar
  14. 14.
    Lo, S., Ammar, M., Zegura, E.: Design and Analysis of Schedules for Virtual Network Migration. In: IFIP Networking Conference, pp. 1–9 (2013)Google Scholar
  15. 15.
    Sun, G., Liao, D., Anand, V., et al.: A new technique for efficient live migration of multiple virtual machines. Future Gener. Comput. Syst. 55, 74–86 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to virtual network components. In: IEEE INFOCOM, pp. 2812–2823 (2006)Google Scholar
  17. 17.
    Yu, M., Yi, Y., Rexford, J., et al.: Rethinking virtual network embedding: substrate support for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008)CrossRefGoogle Scholar
  18. 18.
    Butt, N.F., Chowdhury, M., Boutaba, R.: Topology-Awareness and Reoptimization Mechanism for Virtual Network Embedding. In: IFIP/TC6 NETWORKING, pp. 27–39 (2010)Google Scholar
  19. 19.
    Fajjari, I., Aitsaadi, N., Pujolle, G., et al.: VNR Algorithm: A Greedy Approach for Virtual Networks Reconfigurations. In: IEEE GLOBECOM, pp. 1–6 (2011)Google Scholar
  20. 20.
    Lo, S., Ammar, M., Zegura, E., et al.: Virtual Network Migration on Real Infrastructure: A PlanetLab Case Study. In: IFIP Networking Conference, pp. 1–9 (2014)Google Scholar
  21. 21.
    Marquezan, C.C., Granville, L.Z., Nunzi, G., et al.: Distributed autonomic resource management for network virtualization. In: Network Operations and Management Symposium (NOMS), pp. 463–470 (2010)Google Scholar
  22. 22.
    Wang, Y., Keller, E., Biskeborn, B., et al.: Virtual routers on the move: live router migration as a network-management primitive. ACM SIGCOMM Comput. Commun. Rev. 38(4), 231–242 (2008)CrossRefGoogle Scholar
  23. 23.
    Rodriguez, E., Alkmim, G., Batista, D.M., et al.: Energy-aware mapping and live migration of virtual networks. IEEE Syst. J. 11(2), 637–648 (2017)Google Scholar
  24. 24.
    Chen, X., Phillips, C.: Virtual Router Migration and Infrastructure Sleeping for Energy Management of IP over WDM Networks. In: International Conference on Telecommunications and Multimedia (TEMU), pp. 31–36 (2012)Google Scholar
  25. 25.
    Mattos, D.M.F., Duarte, O.C.M.B.: XenFlow: Seamless Migration Primitive and Quality of Service for Virtual Networks. In: IEEE GLOBECOM, pp. 2326–2331 (2014)Google Scholar
  26. 26.
    Arora, D., Bienkowski, M., Feldmann, A., et al.: Online Strategies for Intra and Inter Provider Service Migration in Virtual Networks. In: Principles, Systems and Applications of IP Telecommunications, pp. 1–11 (2011)Google Scholar
  27. 27.
    Liao, D., Sun, G., Anand, V., et al.: Survivable mapping for multicast virtual network under single regional failure. In: IEEE GLOBECOM, pp. 36–41 (2014)Google Scholar
  28. 28.
    Liao, D., Sun, G., Anand, V., et al.: Survivable provisioning for multicast service oriented virtual network requests in cloud-based data centers. Opt. Switch. Netw. PART 3, 260–273 (2014)CrossRefGoogle Scholar
  29. 29.
    Cerroni, W.: Multiple Virtual Machine Live Migration in Federated Cloud Systems. In: IEEE INFOCOM, pp. 25–30 (2014)Google Scholar
  30. 30.
    Cerroni, W., Callegati, F.: Live Migration of Virtual Network Functions in Cloud-Based Edge Networks. In: IEEE ICC, pp. 2963–2968 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.China West Normal UniversityNanChongChina
  2. 2.University of Electronic Science and Technology of ChinaChengduChina
  3. 3.Xi’an Jiaotong Liverpool UniversitySuzhouChina

Personalised recommendations