Skip to main content

Advertisement

Log in

Adaptive DC interconnection provisioning in distributed all-optical micro-datacenters using holistically SDN orchestration for dynamic access

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The metro-embedded datacenter (ME-DC) architecture which is based on micro-DCs (mDC) is introduced and implemented to deliver more flexible services with less access latency. Hierarchical SDN control is employed to adaptively interconnect the distributed mDCs and the metro network slices into re-configurable virtual DC (VDC). Such an approach improves the overall resource mobility, especially for traveling users that need to dynamically access the service. In this paper, the VDC re-configuration and pre-configuration mechanisms for dynamic user access are proposed and demonstrated for the first time. In specific, by re-configuring the VDC with the most accessible resources with user location tracking, fast and flexible service is provided with consistent service access. Furthermore, by pre-configuring the VDC with user prediction, mDC and metro network resources are reserved in advance for users in order to provide seamless service. Demonstration based on the implemented ME-DC prototype shows that VDC is adaptively constructed for dynamic user access with fast and flexible service provisioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fiorani, M., Samadi, P., Shen, Y., Wosinska, L., Bergman, K.: Flexible architecture and control strategy for metro-scale networking of geographically distributed data centers. In: 42nd European Conference on Optical Communication (ECOC). IEEE, pp. 1–3 (2016)

  2. Emerson, Network Power, Data Center 2025: Exploring the Possibilities (Online). http://www.emersonnetworkpower.com/en-US/Latest-Thinking/

  3. Pagès, A., Perelló, J., Agraz, F., Spadaro, S.: Optimal VDC service provisioning in optically interconnected disaggregated data centers. IEEE Commun. Lett. 20(7), 1353–1356 (2016)

    Google Scholar 

  4. Chen, H., Zhang, J., Zhao, Y., Deng, J., Wang, W., He, R., Yu, X., Ji, Y., Zheng, H., Lin, Y., et al.: Experimental demonstration of datacenter resources integrated provisioning over multi-domain software defined optical networks. J. Lightwave Technol. 33(8), 1515–1521 (2015)

    Article  Google Scholar 

  5. Zhao, Y., He, R., Chen, H., Zhang, J., Ji, Y., Zheng, H., Lin, Y., Wang, X.: Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks. Opt. Express 22(8), 9538–9547 (2014)

    Article  Google Scholar 

  6. Ni, W., Huang, C., Wu, J.: Provisioning high-availability datacenter networks for full bandwidth communication. Comput. Netw. 68, 71–94 (2014)

    Article  Google Scholar 

  7. Index, Cisco Visual Networking, The Zettabyte Era–Trends and Analysis. Cisco White Paper (2015)

  8. Church, K., Greenberg, A.G., Hamilton, J.R.: On delivering embarrassingly distributed cloud services. In: HotNets, pp. 55–60, Citeseer (2008)

  9. Chen, G., Guo, H., Zhang, D., Zhu, Y., Wang, C., Yu, H., Wang, Y., Wang, J., Wu, J., Cao, X, Yoshikane, N., Tsuritani, T., Morita, I., Suzuki, M.: First demonstration of holistically-organized metro-embedded cloud platform with all-optical interconnections for virtual datacenter provisioning. In: OptoElectronics and Communications Conference (OECC). IEEE, pp. 1–3 (2015)

  10. Bari, M.F., Boutaba, R., Esteves, R., Granville, L.Z., Podlesny, M., Rabbani, M.G., Zhang, Q., Zhani, M.F.: Data center network virtualization: a survey. IEEE Commun. Surv. Tutor. 15(2), 909–928 (2013)

    Article  Google Scholar 

  11. Yang, Y., Chang, X., Liu, J., Li, L.: Towards robust green virtual cloud data center provisioning. Trans. Cloud Comput. 5(2), 168–181 (2015)

  12. Chen, G., Guo, H., Zhang, D., Wu, J., Cao, X., Yoshikane, N., Tsuritani, T., Morita, I.: User-access-frequency statistics based hotspot adjustment in all-optically interconnected metro-embedded datacenter. Opt. Commun. 381, 437–442 (2016)

    Article  Google Scholar 

  13. Cao, X., Popescu, I., Chen, G., Guo, H., Yoshikane, N., Tsuritani, T., Wu, J., Morita, I.: Optimal and dynamic virtual datacenter provisioning over metro-embedded datacenters with holistic SDN orchestration. Opt. Switch. Netw. 24, 1–11 (2017)

    Article  Google Scholar 

  14. Guo, H., Chen, G., Zhang, D., Cao, X., Wu, J., Tsuritani, T.: Metro-embedded cloud platform with all-optical interconnections for virtual datacenter provisioning. In: OptoElectronics and Communications Conference (OECC). IEEE, pp. 1–3 (2016)

  15. Qiao, C., Yoo, M.: Optical burst switching (OBS)-a new paradigm for an Optical Internet. J. High Speed Netw. 8(1), 69–84 (1999)

    Google Scholar 

  16. Gauger, C.M., Mukherjee, B.: Optical burst transport network (OBTN)-a novel architecture for efficient transport of optical burst data over lambda grids. In: Workshop on High Performance Switching and Routing (HPSR). IEEE, pp. 58–62 (2005)

  17. Popescu, I., Ušćumlić, B., Pointurier, Y., Gravey, A., Gravey, P., Morvan, M.: A cost comparison of survivable subwavelength switching optical metro networks. In: 26th International Teletraffic Congress (ITC). IEEE, pp. 1–9 (2014)

  18. Chen, G., Zhang, D., Guo, H., Wu, J., Cao, X., Yoshikane, N., Tsuritani, T., Morita, I.: Optimized multicast scheduling in datacenter optical burst ring network. In: OptoElectronics and Communications Conference (OECC). IEEE, pp. 1–3 (2016)

  19. Zhang, D., Liu, L., Hong, L., Guo, H., Tsuritani, T., Wu, J., Morita, I.: Experimental demonstration of OBS/WSON multi-layer optical switched networks with an OpenFlow-based unified control plane. In: International Conference on Optical Network Design and Modeling (ONDM). IEEE, pp. 1–6 (2012)

  20. SDN and Openflow Homepage (Online). http://www.opennetworking.org/

  21. RESTful API Tutorial (Online). http://www.restapitutorial.com/

  22. Openstack (Online). http://www.opennetworking.org/

  23. Liu, T., Bahl, P., Chlamtac, I.: Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks. IEEE J. Sel. Areas Commun. 16(6), 922–936 (1998)

    Article  Google Scholar 

  24. Zhang, J., Yu, H., Ji, Y., Li, H., Yu, X., Zhao, Y., Li, H.: Demonstration of radio and optical orchestration for improved coordinated multi-point (CoMP) service over flexible optical fronthaul transport networks. In: Optical Fiber Communication Conference. Optical Society of America, pp. M2I–2 (2017)

  25. Chan, J., Seneviratne, A.: A practical user mobility prediction algorithm for supporting adaptive QoS in wireless networks. In: IEEE International Conference on Networks. IEEE, pp. 104–111 (1999)

  26. Bhatti, S., Xu, J.: Survey of target tracking protocols using wireless sensor network. In: International Conference on Wireless and Mobile Communications. IEEE, pp. 110–115 (2009)

  27. Wälchli, M., Skoczylas, P., Meer, M., Braun, T.: Distributed event localization and tracking with wireless sensors. In: Boavida, F., Monteiro, E., Mascolo, S., Koucheryavy, Y. (eds.) Wired/Wireless Internet Communications, pp. 247–258. Springer, New York (2007)

  28. Kung, H.-T., Vlah, D.: Efficient location tracking using sensor networks. Wirel. Commun. Netw. 3, 1954–1961 (2003)

    Google Scholar 

  29. Lee, S.-M., Cha, H., Ha, R.: Energy-aware location error handling for object tracking applications in wireless sensor networks. Comput. Commun. 30(7), 1443–1450 (2007)

    Article  Google Scholar 

  30. RYU (Online). http://osrg.github.io/ryu/

  31. Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar, G. M.: Can the production network be the testbed?. In: USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. 1–6 (2010)

  32. Cao, X., Yoshikane, N., Tsuritani, T., Morita, I.:  Heterogeneous multi-domain network virtualization with end-to-end differentiated service provisioning and virtual network organization. In: Optical Fiber Communication Conference (OFC). Optical Society of America, pp. Th4G–3 (2015)

  33. NOX/POX (Online). http://www.noxrepo.org/

  34. Cao, X., Yoshikane, N., Popescu, I., Tsuritani, T., Morita, I.: Network abstraction with functional service design in the software-defined optical networks. In: Photonic Networks and Devices (PND), pp. NeTu2C–2. Optical Society of America (2016)

  35. Cao, X., Yoshikane, N., Tsuritani, T., Morita, I.: Dynamic support and demonstration for orchestrated multi-domain software-defined optical networks. In: International Conference on Optical Network Design and Modeling (ONDM). IEEE , pp. 1–6 (2016)

  36. Cao, X., Yoshikane, N., Takeshima, K., Popescu, I., Tsuritani, T., Morita, I.: Software-defined optical transmission and networking with functional service design. In: OptoElectronics and Communications Conference (OECC). IEEE, pp. 1–3 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Chen, G., Popescu, I. et al. Adaptive DC interconnection provisioning in distributed all-optical micro-datacenters using holistically SDN orchestration for dynamic access. Photon Netw Commun 35, 129–140 (2018). https://doi.org/10.1007/s11107-017-0735-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0735-7

Keywords

Navigation