Skip to main content
Log in

An adaptive–alternative restoration algorithm for optical networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Optical networks have been considered as the most capable technology for supplying the ever-increasing network bandwidth demand generated by the new Internet services. However, a significant challenge for optical networks is to provide an efficient manner to recover the lost communications due to failures. A failure in a system component or an optical fiber link can shut down all the crossing lightpaths, which may lead to a decrease in the revenue for clients or some sanctions to the providers due to an unattended agreed service level. In this work, we propose an adaptive–alternative path restoration algorithm, named NrPSR-R. The proposal has an adaptation capability according to the network state. NrPSR-R finds the Nr routes with minimum cost and selects one of them using a pre-defined policy. We performed a parametric analysis of the NrPSR-R algorithm. We also compared our proposal to other well-known restoration algorithms on different scenarios and NrPSR-R outperformed the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Freitas, R.C., Silva, R.C.L., Pereira, H.A., Chaves, D.A.R., Bastos-Filho, C.J.A., Martis-Filho, J.F.: A novel restoration algorithm based on optical signal-to-noise ratio for transparent optical networks. In: XXIX Brazilian Symposium on Telecommunications, pp. 1–5 (Oct 2011)

  2. Bell Canada network failure a boost for bell mobility (Jan 2016). http://www.hightechviews.com/index.php?articleID=160

  3. Ramaswami, R., Sivarajan, K., Sasaki, G.: Optical Networks: A Practical Perspective, 3rd edn. Morgan Kaufmann Publishers Inc, San Francisco (2009)

    Google Scholar 

  4. Saini, H., Garg, A.K.: Protection and restoration schemes in optical networks: a comprehensive survey. Int. J. Microw. Appl. 2, 5–11 (2013)

    Google Scholar 

  5. Chen, X., Tornatore, M., Zhu, S., Ji, F., Zhou, W., Chen, C., Hu, D., Jiang, L., Zhu, Z.: Flexible availability-aware differentiated protection in software-defined elastic optical networks. J. Lightwave Technol. 33, 3872–3882 (2015)

    Article  Google Scholar 

  6. Chen, X., Ji, F., Zhu, S., Bao, Q., Zhu, Z.: Availability-aware service provisioning in SD-EON-based inter-datacenter networks. Photonic Netw. Commun. 31(3), 543–549 (2016)

    Article  Google Scholar 

  7. Wu, T.: Fiber network service survivability. Artech House Publishers, London (1992)

    Google Scholar 

  8. Wu, T.-H.: Emerging technologies for fiber network survivability. IEEE Commun. Mag. 33, 58–59, 62–74, (Feb 1995)

  9. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks. part i-protection, In: INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. In: Proceedings. IEEE , vol. 2, pp. 744–751 (Mar 1999)

  10. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks. ii. restoration. In: Communications, 1999. ICC ’99. 1999 IEEE International Conference on, vol. 3, pp. 2023–2030 (1999)

  11. Saini, H., Garg, A.K.: Protection and restoration schemes in optical networks: A comprehensive survey, In: International Journal of Microwaves Applications, vol. 2 (Jan 2013)

  12. Rahman, S., Parvin, N., Ahmed, T., Reza, S., Halida, H., Enam: Detection of multiple failures in wavelength division multiplexed optical network using graph based light path restoration method, vol. 3, pp. 2248–9622 (2013)

  13. Zhang, J., Mukheriee, B.: A review of fault management in WDM mesh networks: basic concepts and research challenges. IEEE Netw 18, 41–48 (2004)

    Article  Google Scholar 

  14. Gonzalez-Montoro, N., Finochietto, J.M.: Incremental spare capacity allocation for optical networks restoration, 2015 . In: XVI Workshop on Information Processing and Control (RPIC), pp. 1–6 (Oct 2015)

  15. Utama, S., Istikmal, Sugesti, E.S.: Linkspath: A novel hybrid restoration scheme in high speed optical networks, 2015 . In: International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), pp. 30–35 (Aug 2015)

  16. da Silva, C.N., Wosinska, L., Spadaro, S., Costa, J.C.W.A., Frances, C.R.L., Monti, P.: Restoration in optical cloud networks with relocation and services differentiation. IEEE/OSA J. Opt. Commun. Netw. 8, 100–111 (2016)

    Article  Google Scholar 

  17. Wang, M., Furdek, M., Wosinska, L., Monti, P.: Wavelength overprovisioning strategies for enhanced optical path restoration, 2016. In: 18th International Conference on Transparent Optical Networks (ICTON), pp. 1–5 (July 2016)

  18. de Freitas, R., Martins-Filho, J., Silva, R., Bastos-Filho, C.J.A., Pereira, H., Chaves, D.A.R.: A novel double-link failure restoration algorithm based on optical signal-to-noise ratio for all-optical networks. In: Microwave Optoelectronics Conference (IMOC), 2011 SBMO/IEEE MTT-S International, pp. 361–365 (Oct 2011)

  19. de Freitas, R., Martins-Filho, J., Chaves, D.A.R., Silva, R.C.L., Bastos-Filho, C.J.A., Pereira, H.,  Leitao, E. dos S.: Optical signal-to-noise ratio restoration algorithm applied to optical network resilience to node failures, In: IEEE Latin-American Conference on Communications (LATINCOM), 2011, pp. 1–6 (Oct 2011)

  20. Freitas, R., Leito, E., Silva, R.C.L., Chaves, D.A.R., Pereira, H., Filho, C., Filho, J.: Osnr-based restoration algorithm for optical network resilience to node failures. IEEE Lat. Am. Trans. (Rev. IEEE Am. Lat) 10, 1893–1900 (2012)

    Article  Google Scholar 

  21. Bastos-Filho, C., Freitas, R., Chaves, D., Silva, R., Freire, M., Pereira, H., Martins-Filho, J.: An adaptive path restoration algorithm based on power series routing for all-optical networks, In: 15th International Conference on Transparent Optical Networks (ICTON), 2013, pp. 1–4 (June 2013)

  22. Chaves, D.A.R., Aguiar, D.O., Bastos-Filho, C.J.A., Martins-Filho, J.F.: Fast and adaptive impairment aware routing and wavelength assignment algorithm optimized by offline simulations. Opt. Switch. Netw. 7(2), 127–138 (2010)

    Article  Google Scholar 

  23. Xavier, A., Silva, R., Bastos-Filho, C., Martins-Filho, J., Chaves, D.: An adaptive-alternative routing algorithm for all-optical networks. In: Microwave Optoelectronics Conference (IMOC), 2011 SBMO/IEEE MTT-S International, pp. 719 –723, 29 2011 (Nov 1 2011)

  24. Yen, J.: Finding the k shortest loopless paths in a network. Maneg. Sci. 17(11), 712–716 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chaves, D.: Algoritmos rpidos de irwa para redes totalmente pticas, Dissertao (Mestrado) - Engenharia Eltrica, Universidade Federal de Pernambuco, p. 104 (2008)

  26. Bastos-Filho, C.J.A., Silva, R.C.L., Chaves, D.A.R., Xavier, A.V.S., Martins-Filho, J.F.: Comparing OSNR based policies for an adaptive-alternative algorithm to all-optical networks. J. Microw., Optoelectron. Electromagn. Appl., JMOe 12, 284–296 (2013)

    Google Scholar 

  27. Zang, H., Jue, J.P.: A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1, 47–60 (2000)

    Google Scholar 

  28. Bastos-Filho, C.J.A., Santana, R., Silva, D., Martins-Filho, J., Chaves, D.: Hopfield neural networks for routing in all-optical networks, In: 12th International Conference on Transparent Optical Networks (ICTON), 2010, pp. 1–4 (June 2010)

  29. Chaves, D.A.R., Pereira, H.A., Bastos-Filho, J.F., Martins-Filho, CJAe: A simulator for transparent optical networks. J. Commun. Inf. Syst. 25, 10 (2011)

    Google Scholar 

  30. Pereira, H.A., Chaves, D.A.R., Bastos-Filho, C.J.A., Martins-Filho, J.F.: OSNR model to consider physical layer impairments in transparent optical networks. Photonics Netw. Commun. 18(2), 137–149 (2009)

    Article  Google Scholar 

  31. T. A. S.: Computer Networks, 4th edn. Prentice Hall, Upper Saddle River (2013)

  32. Garcia-Luna-Aceves, J.: A minimum-hop routing algorithm based on distributed information. Comput. Netw. ISDN Syst. 16(5), 367–382 (1989)

    Article  MATH  Google Scholar 

  33. Wen, B., Shenai, R., Sivalingam, K.: Routing, wavelength and time-slot-assignment algorithms for wavelength-routed optical WDM/TDM networks. J. Lightwave Technol. 23, 2598–2609 (2005)

    Article  Google Scholar 

  34. Bastos-Filho, C.J.A., Lima-Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P.: A novel search algorithm based on fish school behavior. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 2646–2651 (2008)

  35. Bastos-Filho, C.J.A., Nascimento, D. O.: An enhanced fish school search algorithm, BRICS’2013 (2013)

  36. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory, In: Proceedings of the Sixth International Symposium of Micro Machine and Human Science, 1995. MHS ’95, outubro, pp. 39–43 (1995)

  37. Karaboga, D., Okdem, S.: A simple and global optimization algorithm for engineering problems: differential evolution algorithm. Turk. J. Electr. Eng. 12(1), 8 (2004)

    Google Scholar 

  38. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from UFPE and UPE, CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo J. A. Bastos-Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.C.L., Martins-Filho, J.F. & Bastos-Filho, C.J.A. An adaptive–alternative restoration algorithm for optical networks. Photon Netw Commun 35, 35–52 (2018). https://doi.org/10.1007/s11107-017-0729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0729-5

Keywords

Navigation