Abstract
Here we reported capable ultra-compact optical triplexer on silicon-on-insulator substrate with resonance cavity for an application of optical communication network. Three cavities are used which can separate three communication wavelengths 1.31, 1.445 and 1.55 \(\upmu \)m. The average output efficiency and quality factor of proposed structure 98% and 2335 obtained, respectively. Proposed triplexer has the very low cross talk of −25 to −50 dB. Total foot print of structure 28.4 \(\upmu \mathrm{m}^{2}\) designed that offers strong transverse confinement of light and is promising candidates for photonic integrated circuits such as wavelength division multiplexing, optical communication and compatible with complementary metal–oxide–semiconductor-Si fabrication processes.
Similar content being viewed by others
References
Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)
Notomi, M., Shinya, A., Yamada, K., Takahashi, J., Takahashi, C., Yokohama, I.: Single mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI. Electr. Lett. l37, 293 (2000)
Johnson, S.G., Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Waveguides in photonic-crystal slabs. Phys. Rev. 62, 8212–8222 (2000)
Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quantum Electron. 40, 603–613 (2008)
Shinya, A., Notomi, M., Yokohama, I., Takahashi, C., Takahashi, J.: Two-dimensional Si photonic crystals on oxide using SOI substrate. Opt. Quantum Electron. 34, 113 (2002)
Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 686, 3889–3894 (2009)
Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal directional couplers. J. Lightwave Technol. 19, 1970–1975 (2001)
Niemi, T., Frandsen, L.H., Hede, K.K., Harpøth, A., Borel, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photon. Tech. Lett. 18, 226–228 (2006)
Li, L., Liu, G.Q., Chen, Y.H., Tang, F.L., Huang, K., Gong, L.X.: Photonic crystal multi-channel drop filters with Fabry-Perot microcavity reflection feedback. Optik 124, 2608–2611 (2013)
Chein, F.S.-S., Hsu, Y.-J., Hsieh, W.-F., Cheng, S.-C.: Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides. Opt. Express 12, 1119–1125 (2004)
Mehdizadeh, F., Soroosh, M.: A new proposal for eightchannel optical demultiplexer based on photonic crystal resonant cavities. Photon. Netw. Commun. 31, 65–70 (2016)
Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh- Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E 56, 211–215 (2014)
Shih, T.-T., Wu, Y.-D., Lee, J.-J.: Proposal for compact optical triplexer filter using 2-D photonic crystals. IEEE Photon. Technol. Lett. 21(1), 18–20 (2009)
He, L., Xu, X., Liu, L., Yu, T., Fang, L.: Ultra compact triplexer by coupling and decoupling of multiple photonic crystal waveguides. J. Opt. 12(6) (2010). doi:10.1088/2040-8978/12/6/065502
Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and optimization of photonic crystal triplexer for optical networks. IJCSI 9(4), 24–28 (2012)
Yang, J., Zhang, Z., Chang, S.H., Jia, H., Zhang, X.: Compact double-layer waveguide grating triplexer based on silicon-on-insulator. Micro Nano Lett. 7(4), 384–387 (2012)
Truong, C.-D., Hoang, V.-C.: A triplexer based on cascaded 2\(\times \)2 butterfly MMI couplers using silicon waveguides. Opt. Quantum Electron. (2014). doi:10.1007/s11082-014-9923-1
Zhang, Z., Tsuji, Y., Yasui, T., Hirayama, K.: Design of ultra-compact triplexer with function-expansion based topology optimization. Opt. Express 23(4), 3937 (2015). doi:10.1364/OE.23.003937
Taflove, A., Hangess, S.C.: Computational Electrodynamics. The Finite—Difference Time—Domain Method, 3rd edn. Artech House, Norwood (2005)
Gedney, S.D.: Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Morgan & Claypool, Lexington (2010)
Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1999)
Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express. 8, 173–190 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Naghizade, S., Sattari-Esfahlan, S.M. High-performance ultra-compact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw Commun 34, 445–450 (2017). https://doi.org/10.1007/s11107-017-0702-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-017-0702-3